Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Frequency-division multiplexing in the terahertz range using a leaky-wave antenna

Abstract

The idea of using radiation in the 0.1–1.0 THz range as carrier waves for free-space wireless communications has attracted growing interest in recent years, due to the promise of the large available bandwidth1,2. Recent research has focused on system demonstrations3,4, as well as the exploration of new components for modulation5, beam steering6 and polarization control7. However, the multiplexing and demultiplexing of terahertz signals remains an unaddressed challenge, despite the importance of such capabilities for broadband networks. Using a leaky-wave antenna based on a metal parallel-plate waveguide, we demonstrate frequency-division multiplexing and demultiplexing over more than one octave of bandwidth. We show that this device architecture offers a unique method for controlling the spectrum allocation, by variation of the waveguide plate separation. This strategy, which is distinct from those previously employed in either the microwave8 or optical9 regimes, enables independent control of both the centre frequency and bandwidth of multiplexed terahertz channels.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of the multiplexer.
Figure 2: Free-space-to-waveguide coupling.
Figure 3: Multiplexing of terahertz signals from two transmitters.
Figure 4: Tuning the channel frequency with plate separation.
Figure 5: Spectrum allocation tuning with waveguide geometry.

References

  1. 1

    Piesiewicz, R. et al. Short-range ultra broadband terahertz communications: concepts and perspectives. IEEE Antennas Propag. Mag. 49, 24–39 (2007).

    ADS  Article  Google Scholar 

  2. 2

    Kleine-Ostmann, T. & Nagatsuma, T. A review on terahertz communications research. J. Infrared Milli. Terahertz Waves 32, 143–171 (2011).

    Article  Google Scholar 

  3. 3

    Song, H.-J. et al. 24 Gbit/s data transmission in 300 GHz band for future terahertz communications. Electron. Lett. 48, 953–954 (2012).

    Article  Google Scholar 

  4. 4

    Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nature Photon. 7, 977–981 (2013).

    ADS  Article  Google Scholar 

  5. 5

    Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    ADS  Article  Google Scholar 

  6. 6

    Monnai, Y. et al. Terahertz beam steering and variable focusing using programmable diffraction gratings. Opt. Express 21, 2347–2354 (2013).

    ADS  Article  Google Scholar 

  7. 7

    Shuvaev, A. et al. Electric field control of terahertz polarization in a multiferroic manganite with electromagnons. Phys. Rev. Lett. 111, 227201 (2013).

    ADS  Article  Google Scholar 

  8. 8

    Oliner, A. A. & Jackson, D. R. in Antenna Engineering Handbook (ed. Volakis, J. L.) Ch. 11 (McGraw-Hill, 2007).

    Google Scholar 

  9. 9

    Keiser, G. Optical Fiber Communications 4th edn (McGraw-Hill, 2011).

    Google Scholar 

  10. 10

    Yan, Y. et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nature Commun. 5, 4876 (2014).

    ADS  Article  Google Scholar 

  11. 11

    Luo, L.-W. et al. WDM-compatible mode-division multiplexing on a silicon chip. Nature Commun. 5, 3069 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Acampora, A. S. An Introduction to Broadband Networks (Plenum, 1994).

    Book  Google Scholar 

  13. 13

    Su, K., Moeller, L., Barat, R. B. & Federici, J. F. Experimental comparison of performance degradation from terahertz and infrared wireless links in fog. J. Opt. Soc. Am. A 29, 179–184 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Suen, J. Y., Fang, M. T. & Lubin, P. M. Global distribution of water vapor and cloud cover—sites for high-performance THz applications. IEEE Trans. THz Sci. Technol. 4, 86–100 (2014).

    Article  Google Scholar 

  15. 15

    Sabharwal, A., Khoshnevis, A. & Knightly, E. Opportunistic spectral usage: bounds and a multi-band CSMA/CA protocol. IEEE/ACM Trans. Netw. 15, 533–545 (2007).

    Article  Google Scholar 

  16. 16

    Monnai, Y. et al. Terahertz beam focusing based on plasmonic waveguide scattering. Appl. Phys. Lett. 101, 015116 (2012).

    Article  Google Scholar 

  17. 17

    Hon, P. W. C., Liu, Z., Itoh, T. & Williams, B. S. Leaky and bound modes in terahertz metasurfaces made of transmission-line metamaterials. J. Appl. Phys. 113, 033105 (2013).

    ADS  Article  Google Scholar 

  18. 18

    Esquius-Morote, M., Gomez-Diaz, J. S. & Perruisseau-Carrier, J. Sinusoidally modulated graphene leaky-wave antenna for electronic beam scanning at THz. IEEE Trans. THz Sci. Technol. 4, 116–122 (2014).

    Article  Google Scholar 

  19. 19

    Mendis, R. & Grischkowsky, D. Undistorted guided-wave propagation of subpicosecond terahertz pulses. Opt. Lett. 26, 846–848 (2001).

    ADS  Article  Google Scholar 

  20. 20

    Keshavamurthy, T. L. & Butler, C. M. Characteristics of a slotted parallel-plate waveguide filled with a truncated dielectric. IEEE Trans. Antennas Propag. 29, 112–117 (1981).

    ADS  Article  Google Scholar 

  21. 21

    Chuang, C. W. Generalized admittance matrix for a slotted parallel-plate waveguide. IEEE Trans. Antennas Propag. 36, 1227–1230 (1988).

    ADS  Article  Google Scholar 

  22. 22

    Lee, C. -W. & Son, H. Periodically slotted dielectrically filled parallel-plate waveguide as a leaky-wave antenna: E-polarization case. IEEE Trans. Antennas Propag. 47, 171–178 (1999).

    ADS  Article  Google Scholar 

  23. 23

    Lee, J.-I., Cho, U.-H. & Cho, Y.-K. Analysis for a dielectrically filled parallel-plate waveguide with finite number of periodic slots in its upper wall as a leaky-wave antenna. IEEE Trans. Antennas Propag. 47, 701–706 (1999).

    ADS  Article  Google Scholar 

  24. 24

    Mendis, R. & Mittleman, D. M. A 2D artificial dielectric with 0 < n < 1 for the terahertz region. IEEE Trans. Microw. Theory Techn. 58, 1993–1998 (2010).

    ADS  Article  Google Scholar 

  25. 25

    Mendis, R., Liu, J. & Mittleman, D. M. THz mirage: deflecting terahertz beams in an inhomogeneous artificial dielectric based on a parallel-plate waveguide. Appl. Phys. Lett. 101, 111108 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Liu, J., Mendis, R. & Mittleman, D. M. A Maxwell's fish eye lens for the terahertz region. Appl. Phys. Lett. 103, 031104 (2013).

    ADS  Article  Google Scholar 

  27. 27

    Mbonye, M., Mendis, R. & Mittleman, D. M. Inhibiting the TE1-mode diffraction losses in terahertz parallel-plate waveguides using concave plates. Opt. Express 20, 27800–27809 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Mbonye, M., Mendis, R. & Mittleman, D. M. Measuring TE1 mode losses in terahertz parallel-plate waveguides. J. Infrared Milli. Terahertz Waves 34, 416–422 (2013).

    Article  Google Scholar 

  29. 29

    Mendis, R. & Mittleman, D. M. Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications. Opt. Express 17, 14839–14850 (2009).

    ADS  Article  Google Scholar 

  30. 30

    Mendis, R. & Mittleman, D. M. An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation. J. Opt. Soc. Am. B 26, 6–13 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank K. Reichel for contributions. This work was supported by the US National Science Foundation and the W.M. Keck Foundation.

Author information

Affiliations

Authors

Contributions

All of the authors contributed to the conception and design of these experiments. R.W.M. and N.J.K. built the set-up and collected and analysed the data. All authors contributed to the discussions and to the writing of the manuscript.

Corresponding author

Correspondence to Daniel M. Mittleman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 385 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karl, N., McKinney, R., Monnai, Y. et al. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nature Photon 9, 717–720 (2015). https://doi.org/10.1038/nphoton.2015.176

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing