Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity

Abstract

Polaritons with hyperbolic dispersion are key to many emerging photonic technologies, including subdiffraction imaging, sensing and spontaneous emission engineering1,2,3,4,5,6,7,8. Fundamental to their effective application are the lifetimes of the polaritons, as well as their phase and group velocities7,9. Here, we combine time-domain interferometry10 and scattering-type near-field microscopy11 to visualize the propagation of hyperbolic polaritons in space and time, allowing the first direct measurement of all these quantities. In particular, we study infrared phonon polaritons in a thin hexagonal boron nitride8,12,13 waveguide exhibiting hyperbolic dispersion and deep subwavelength-scale field confinement. Our results reveal—in a natural material—negative phase velocity paired with a remarkably slow group velocity of 0.002c and lifetimes in the picosecond range. While these findings show the polariton's potential for mediating strong light–matter interactions and negative refraction, our imaging technique paves the way to explicit nanoimaging of polariton propagation characteristics in other two-dimensional materials, metamaterials and waveguides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Near-field imaging of metal-edge-launched HPs on a 135-nm-thick h-BN layer on SiO2.
Figure 3: Dispersion and real-space maps of the isolated HP-M0 modes.
Figure 2: Time-domain interferometry of broadband HP pulses.
Figure 4: Simultaneous real-space mapping of fringe and envelope velocities vf and ve.

Similar content being viewed by others

References

  1. Smith, D. & Schurig, D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90, 077405 (2003).

    Article  ADS  Google Scholar 

  2. Podolskiy, V. & Narimanov, E. Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 71, 201101 (2005).

    Article  ADS  Google Scholar 

  3. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686–1686 (2007).

    Article  ADS  Google Scholar 

  4. Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nature Mater. 8, 867–871 (2009).

    Article  ADS  Google Scholar 

  5. Noginov, M. A. et al. Controlling spontaneous emission with metamaterials. Opt. Lett. 35, 1863–1865 (2010).

    Article  ADS  Google Scholar 

  6. Jacob, Z., Smolyaninov, I. I. & Narimanov, E. E. Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012).

    Article  ADS  Google Scholar 

  7. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nature Photon. 7, 948–957 (2013).

    Article  ADS  Google Scholar 

  8. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nature Commun. 5, 5221 (2014).

    Article  ADS  Google Scholar 

  9. Lindell, I. V., Tretyakov, S. A., Nikoskinen, K. I. & Ilvonen, S. BW media—media with negative parameters, capable of supporting backward waves. Microw. Opt. Technol. Lett. 31, 129–133 (2001).

    Article  Google Scholar 

  10. Lepetit, L., Chériaux, G. & Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467–2474 (1995).

    Article  ADS  Google Scholar 

  11. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phil. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 362, 787–805 (2004).

    Article  ADS  Google Scholar 

  12. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  ADS  Google Scholar 

  13. Xu, X. G. et al. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nature Commun. 5, 4782 (2014).

    Article  ADS  Google Scholar 

  14. Yang, X., Yao, J., Rho, J., Yin, X. & Zhang, X. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nature Photon. 6, 450–454 (2012).

    Article  ADS  Google Scholar 

  15. Gersen, H. et al. Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides. Phys. Rev. Lett. 94, 123901 (2005).

    Article  ADS  Google Scholar 

  16. Dolling, G. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).

    Article  ADS  Google Scholar 

  17. Feigenbaum, E., Kaminski, N. & Orenstein, M. Negative dispersion: a backward wave or fast light? Nanoplasmonic examples. Opt. Express 17, 18934–18939 (2009).

    Article  ADS  Google Scholar 

  18. Rewitz, C. et al. Ultrafast plasmon propagation in nanowires characterized by far-field spectral interferometry. Nano Lett. 12, 45–49 (2012).

    Article  ADS  Google Scholar 

  19. Kravtsov, V., Atkin, J. M. & Raschke, M. B. Group delay and dispersion in adiabatic plasmonic nanofocusing. Opt. Lett. 38, 1322–1324 (2013).

    Article  ADS  Google Scholar 

  20. Balistreri, M. L. M. Tracking femtosecond laser pulses in space and time. Science 294, 1080–1082 (2001).

    Article  ADS  Google Scholar 

  21. Gersen, H. et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).

    Article  ADS  Google Scholar 

  22. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).

    Article  ADS  Google Scholar 

  23. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  Google Scholar 

  24. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  Google Scholar 

  25. Shi, Z. et al. Amplitude- and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride. ACS Photon. 2, 790–796 (2015).

    Article  Google Scholar 

  26. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nature Commun. 6, 6963 (2015).

    Article  ADS  Google Scholar 

  27. Li, P. et al. Hyperbolic phonon–polaritons in boron nitride for near-field optical imaging and focusing. Nature Commun. 6, 7507 (2015).

    Article  ADS  Google Scholar 

  28. Guo, Y., Cortes, C. L., Molesky, S. & Jacob, Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012).

    Article  ADS  Google Scholar 

  29. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  30. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

    Article  ADS  Google Scholar 

  31. Guo, Y., Newman, W., Cortes, C. L. & Jacob, Z. Applications of hyperbolic metamaterial substrates. Adv. Optoelectron. 2012, 452502 (2012).

    Article  Google Scholar 

  32. Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529–4534 (2014).

    Article  ADS  Google Scholar 

  33. Eisele, M. et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution. Nature Photon. 8, 841–845 (2014).

    Article  ADS  Google Scholar 

  34. Gunde, M. K. Vibrational modes in amorphous silicon dioxide. Phys. B Condens. Matter 292, 286–295 (2000).

    Article  ADS  Google Scholar 

  35. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

  36. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    Article  ADS  Google Scholar 

  37. Keilmann, F. & Amarie, S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. J. Infrared Milli. Terahertz Waves 33, 479–484 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank F. Keilmann (University of Munich) and R. Huber (University of Regensburg) for discussions. The authors acknowledge support from the European Union through ERC starting grants (TERATOMO grant no. 258461 and SPINTROS grant no. 257654), the European Commission under the Graphene Flagship (contract no. CNECT-ICT-604391), the Spanish Ministry of Economy and Competitiveness (national projects MAT2012-36580 and MAT2012-37638) and the Basque Government (project PI2011-1). F.K. acknowledges support from the Fundacio Cellex Barcelona, ERC Career integration grant 294056 (GRANOP), ERC starting grant 307806 (CarbonLight) and project GRASP (FP7-ICT-2013-613024-GRASP).

Author information

Authors and Affiliations

Authors

Contributions

E.Y., M.S. and R.H. conceived the study. E.Y. and M.S. performed the experiments. E.Y., M.S. and R.H. analysed the data and discussed the results. O.T. fabricated the sample. M.S., A.W., M.B.L. and A.Y.N. carried out simulations. E.Y., M.S. and R.H. wrote the manuscript. F.C., L.E.H., F.H.L.K. and R.H. supervised the work and discussed the manuscript. All authors contributed to the scientific discussion and manuscript revisions.

Corresponding author

Correspondence to Rainer Hillenbrand.

Ethics declarations

Competing interests

R.H. is co-founder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the one used in this study. All other authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoxall, E., Schnell, M., Nikitin, A. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nature Photon 9, 674–678 (2015). https://doi.org/10.1038/nphoton.2015.166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing