Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond


Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects1,2,3,4, improved sensitivity to minute forces5,6, and provided avenues to probe fundamental physics at the nanoscale7,8,9. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science10,11 to nanoscale sensing12. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen–vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen–vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental overview.
Figure 2: Mechanical and optical behaviour of vacuum levitated nanodiamonds.
Figure 3: Optomechanical control of nanodiamond fluorescence at low vacuum.
Figure 4: Optically detected magnetic resonance in levitated nanodiamonds.


  1. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  2. O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article  ADS  Google Scholar 

  3. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  Google Scholar 

  4. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  ADS  Google Scholar 

  5. Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nature Nanotech. 7, 509–514 (2012).

    Article  ADS  Google Scholar 

  6. Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nature Nanotech. 8, 493–496 (2013).

    Article  ADS  Google Scholar 

  7. Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

    Article  ADS  Google Scholar 

  8. Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010).

    Article  ADS  Google Scholar 

  9. Pikovski, I., Vanner, M. R., Aspelmeyer, M., Kim, M. S. & Brukner, Č. Probing Planck-scale physics with quantum optics. Nature Phys. 8, 393–397 (2012).

    Article  ADS  Google Scholar 

  10. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    Article  ADS  Google Scholar 

  11. Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010).

    Article  ADS  Google Scholar 

  12. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article  ADS  Google Scholar 

  13. Li, T., Kheifets, S., Medellin, D. & Raizen, M. G. Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673–1675 (2010).

    Article  ADS  Google Scholar 

  14. Kheifets, S., Simha, A., Melin, K., Li, T. & Raizen, M. G. Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science 343, 1493–1496 (2014).

    Article  ADS  Google Scholar 

  15. Gieseler, J., Quidant, R., Dellago, C. & Novotny, L. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nature Nanotech. 9, 358–364 (2014).

    Article  ADS  Google Scholar 

  16. Millen, J., Deesuwan, T., Barker, P. & Anders, J. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nature Nanotech. 9, 425–429 (2014).

    Article  ADS  Google Scholar 

  17. Li, T., Kheifets, S. & Raizen, M. G. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 7, 527–530 (2011).

    Article  ADS  Google Scholar 

  18. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  ADS  Google Scholar 

  19. Gieseler, J., Novotny, L. & Quidant, R. Thermal nonlinearities in a nanomechanical oscillator. Nature Phys. 9, 806–810 (2013).

    Article  ADS  Google Scholar 

  20. Geraci, A. A., Papp, S. B. & Kitching, J. Short-range force detection using optically cooled levitated microspheres. Phys. Rev. Lett. 105, 101101 (2010).

    Article  ADS  Google Scholar 

  21. Arita, Y., Mazilu, M. & Dholakia, K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nature Commun. 4, 2374 (2013).

    Article  ADS  Google Scholar 

  22. Gieseler, J., Spasenović, M., Novotny, L. & Quidant, R. Nonlinear mode coupling and synchronization of a vacuum-trapped nanoparticle. Phys. Rev. Lett. 112, 103603 (2014).

    Article  ADS  Google Scholar 

  23. Yin, Z.-Q., Li, T., Zhang, X. & Duan, L. M. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys. Rev. A 88, 033614 (2013).

    Article  ADS  Google Scholar 

  24. Scala, M., Kim, M. S., Morley, G. W., Barker, P. F. & Bose, S. Matter–wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin. Phys. Rev. Lett. 111, 180403 (2013).

    Article  ADS  Google Scholar 

  25. Horowitz, V. R., Alemán, B. J., Christle, D. J., Cleland, A. N. & Awschalom, D. D. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds. Proc. Natl Acad. Sci. USA 109, 13493–13497 (2012).

    Article  ADS  Google Scholar 

  26. Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nature Nanotech. 8, 175–179 (2013).

    Article  ADS  Google Scholar 

  27. Neukirch, L. P., Giesleser, J., Quidant, R., Novotny, L. & Vamivakas, A. N. Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. Opt. Lett. 38, 2976–2979 (2013).

    Article  ADS  Google Scholar 

  28. Von Haartman, E. et al. Core–shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. J. Mater. Chem. B 1, 2358–2366 (2013).

    Article  Google Scholar 

  29. Dréau, A. et al. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity. Phys. Rev. B 84, 195204 (2011).

    Article  ADS  Google Scholar 

  30. Geiselmann, M., Marty, R., García de Abajo, J. F. & Quidant, R. Fast optical modulation of the fluorescence from a single nitrogen-vacancy centre. Nature Phys. 9, 785–789 (2013).

    Article  ADS  Google Scholar 

Download references


L.P.N. and A.N.V. acknowledge support from the Institute of Optics and the Department of Physics and Astronomy at the University of Rochester and from the Office of Naval Research (award no. N00014-14-1-0442). L.P.N. is supported by a University of Rochester Messersmith fellowship. E.v.H. and J.M.R. acknowledge support from the Academy of Finland (project decision #260599). Finally, the authors thank C. Stroud for loaning several pieces of equipment and L. Novotny, J. Gieseler, V. Jain and R. Quidant for correspondence.

Author information

Authors and Affiliations



L.P.N. performed the experiments. L.P.N. and A.N.V. conceived and designed the experiments, and analysed the data. E.v.H. and J.M.R. performed the nanodiamond modification. All authors co-wrote the paper.

Corresponding authors

Correspondence to Levi P. Neukirch or A. Nick Vamivakas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1678 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neukirch, L., von Haartman, E., Rosenholm, J. et al. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nature Photon 9, 653–657 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing