Letter | Published:

Optical nanoscopy with excited state saturation at liquid helium temperatures

Nature Photonics volume 9, pages 658662 (2015) | Download Citation

Abstract

Optical resolution of solid-state single quantum emitters at the nanometre scale is a challenging step towards the control of delocalized states formed by strongly and coherently interacting emitters1. We have developed a simple super-resolution optical microscopy method operating at cryogenic temperatures, which is based on optical saturation of the excited state of single fluorescent molecules with a doughnut-shaped beam. Sub-10 nm resolution is achieved with extremely low excitation intensities, a million times lower than those used in room-temperature stimulated emission depletion microscopy2. Compared with super-localization approaches3,4,5,6, our technique offers a unique opportunity to super-resolve single molecules with overlapping optical resonance frequencies and paves the way to the study of coherent interactions between single emitters and to the manipulation of their degree of entanglement7,8.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  2. 2.

    , , , & STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photon. 3, 144–147 (2009).

  3. 3.

    Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

  4. 4.

    et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

  5. 5.

    , & Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

  6. 6.

    , & Super-resolution microscopy approaches for live cell imaging. Biophys. J. 107, 1777–1784 (2014).

  7. 7.

    et al. Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298, 385–389 (2002).

  8. 8.

    , , & Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging. Nature Photon. 5, 57–63 (2010).

  9. 9.

    & Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999).

  10. 10.

    , , , & Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349 (2008).

  11. 11.

    , , & Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

  12. 12.

    & Single defect centres in diamond: a review. Phys. Status Solidi A 203, 3207–3225 (2006).

  13. 13.

    , , , & Quantum control of energy flow in light harvesting. Nature 417, 533–535 (2002).

  14. 14.

    et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

  15. 15.

    & Electronic energy transfer and quantum-coherence in π-conjugated polymers. Chem. Mater. 23, 610–620 (2011).

  16. 16.

    & Quantum Dot Molecules (Springer Science & Business Media, 2013).

  17. 17.

    , , & Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013).

  18. 18.

    et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005).

  19. 19.

    et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

  20. 20.

    , , & A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

  21. 21.

    & Quantum information transfer using photons. Nature Photon. 8, 356–363 (2014).

  22. 22.

    , , & Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nature Photon. 9, 363–373 (2015).

  23. 23.

    et al. Pump–probe experiments with a single molecule: ac-Stark effect and nonlinear optical response. Phys. Rev. Lett. 75, 1514 (1995).

  24. 24.

    , , & Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722 (1999).

  25. 25.

    , , , & Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–66 (2007).

  26. 26.

    et al. A single-molecule optical transistor. Nature 460, 76–80 (2009).

  27. 27.

    , & Indistinguishable near-infrared single photons from an individual organic molecule. Phys. Rev. A 82, 063803 (2010).

  28. 28.

    , , & Ten years of single-molecule spectroscopy. J. Phys. Chem. A 104, 1–16 (2000).

  29. 29.

    , , & Single Molecule Optical Detection, Imaging (VCH, 1996).

  30. 30.

    , & Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A 19, 1599 (2002).

  31. 31.

    et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl Acad. Sci. USA 109, E135–E143 (2012).

  32. 32.

    , , , & High-resolution confocal microscopy by saturated excitation of fluorescence. Phys. Rev. Lett. 99, 228105 (2007).

  33. 33.

    et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nature Methods 11, 737–739 (2014).

  34. 34.

    et al. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 14, 4171–4175 (2014).

  35. 35.

    et al. Cryogenic colocalization microscopy for nanometer-distance measurements. ChemPhysChem 15, 763–770 (2014).

  36. 36.

    CryoSTED Microscopy—A New Spectroscopic Approach for Improving the Resolution of STED Microscopy using Low Temperature PhD thesis, Univ. Heidelberg (2007); .

  37. 37.

    , , & Lens-based fluorescence nanoscopy. Q. Rev. Biophys. 48, 178–243 (2015).

  38. 38.

    , , , & Coherent nonlinear single-molecule microscopy. Phys. Rev. A 82, 063823 (2010).

  39. 39.

    , , , & 3-dimensional super-resolution by spectrally selective imaging. Chem. Phys. Lett. 292, 183–187 (1998).

  40. 40.

    , , & Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express 20, 20998–21009 (2012).

  41. 41.

    et al. Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization. Adv. Mater. 24, OP309–OP313 (2012).

  42. 42.

    , & Far-field fluorescence nanoscopy of diamond color centers by ground state depletion. Europhys. Lett. 86, 14001 (2009).

Download references

Acknowledgements

The authors acknowledge financial support from Région Aquitaine, the French Ministry of Education and Research, the Institut Universitaire de France and the Agence Nationale de la Recherche (France Bio Imaging, grant no. ANR-10-INSB-04-01).

Author information

Affiliations

  1. Université Bordeaux, LP2N, Talence F-33405, France

    • B. Yang
    • , J.-B. Trebbia
    • , R. Baby
    • , Ph. Tamarat
    •  & B. Lounis
  2. Institut d'Optique & CNRS, LP2N, Talence F-33405, France

    • B. Yang
    • , J.-B. Trebbia
    • , R. Baby
    • , Ph. Tamarat
    •  & B. Lounis

Authors

  1. Search for B. Yang in:

  2. Search for J.-B. Trebbia in:

  3. Search for R. Baby in:

  4. Search for Ph. Tamarat in:

  5. Search for B. Lounis in:

Contributions

B.Y., J.-B.T. and R.B. performed the experiments. B.Y. and J.-B.T. contributed materials/analysis tools. B.Y., J.-B.T., Ph.T. and B.L. analysed the data and wrote the manuscript. B.L. conceived and supervised the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to B. Lounis.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2015.152

Further reading