Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Super high power mid-infrared femtosecond light bullet

Abstract

Mid-infrared ultrashort high energy laser sources are opening up new opportunities in science, including keV-class high harmonic generation and monoenergetic MeV-class proton acceleration. As new higher energy sources become available, potential applications for atmospheric propagation can dramatically grow to include stand-off detection, laser communications, shock-driven remote terahertz enhancement and extended long-lived thermal waveguides to transport high power microwave and radiofrequency waves. We reveal a new paradigm for long-range, low-loss, ultrahigh power ultrashort pulse propagation at mid-infrared wavelengths in the atmosphere. Before the onset of critical self-focusing, energy in the fundamental wave continually leaks into shock-driven spectrally broadened higher harmonics. A persistent near-invariant solitonic leading edge on the multi-terawatt pulse waveform transports most of the power over hundred-metre-long distances. Such light bullets are resistant to uncontrolled multiple filamentation and are expected to spark extensive research in optics, where the use of mid-infrared lasers is currently much under-utilized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the long mid-IR filament.
Figure 3: Snapshots of a one-dimensional slice through the 24 fs/4 μm/177.2 mJ pulse at distances of 19 m, 30 m, 40 m and 50 m along the self-guided path.
Figure 4: Time-gated temporal and spectral components.
Figure 2: Plot of peak intensity and generated electrons per unit length for the 24 fs/4 μm/177.2 mJ wave packet, showing the initial collapse and subsequent regularization.
Figure 5: Filament power scaling.
Figure 6: Energy scaling of filaments.

Similar content being viewed by others

References

  1. Kasparian, J. et al. White-light filaments for atmospheric analysis. Science 301, 61–64 (2003).

    Article  ADS  Google Scholar 

  2. Tzortzakis, S., Anglos, D. & Gray, D. Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring. Opt. Lett. 31, 1139–1141 (2006).

    Article  ADS  Google Scholar 

  3. Stelmaszczyk, K. et al. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phys. Lett. 85, 3977–3979 (2004).

    Article  ADS  Google Scholar 

  4. Alfano, R. R. & Shapiro, S. L. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594 (1970).

    Article  ADS  Google Scholar 

  5. Ackermann, R. et al. Influence of negative leader propagation on the triggering and guiding of high voltage discharges by laser filaments. Appl. Phys. B 82, 561–566 (2006).

    Article  ADS  Google Scholar 

  6. Zhao, X. M., Diels, J.-C., Wang, C. Y. & Elizondo, J. M. Femtosecond ultraviolet laser pulse induced lightning discharges in gases. IEEE J. Quantum Electron. 31, 599–612 (1995).

    Article  ADS  Google Scholar 

  7. Comtois, D. et al. Triggering and guiding leader discharges using a plasma channel created by an ultrashort laser pulse. Appl. Phys. Lett. 76, 819–821 (2000).

    Article  ADS  Google Scholar 

  8. Kasparian, J. et al. Electric events synchronized with laser filaments in thunderclouds. Opt. Express 16, 5757–5763 (2008).

    Article  ADS  Google Scholar 

  9. Rohwetter, P. et al. Laser-induced water condensation in air. Nature Photon. 4, 451–456 (2010).

    Article  ADS  Google Scholar 

  10. Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).

    Article  ADS  Google Scholar 

  11. Mechain, G. et al. Range of plasma filaments created in air by a multi-terawatt femtosecond laser. Opt. Commun. 247, 171–180 (2005).

    Article  ADS  Google Scholar 

  12. Mlejnek, M., Wright, E. M. & Moloney, J. V. Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 23, 382–384 (1998).

    Article  ADS  Google Scholar 

  13. Mechain, G., Couairon, A., Franco, M., Prade, B. & Mysyrowicz, A. Organizing multiple femtosecond filaments in air. Phys. Rev. Lett. 93, 035003 (2004).

    Article  ADS  Google Scholar 

  14. Mlejnek, M., Kolesik, M., Moloney, J. V. & Wright, E. M. Optically turbulent femtosecond light guide in air. Phys. Rev. Lett. 83, 2938–2941 (1999).

    Article  ADS  Google Scholar 

  15. Mills, M. S., Kolesik, M. & Christodoulides, D. N. Dressed optical filaments. Opt. Lett. 38, 25–27 (2013).

    Article  ADS  Google Scholar 

  16. Scheller, M. et al. Externally refuelled optical filaments. Nature Photon. 8, 297–301 (2014).

    Article  ADS  Google Scholar 

  17. Point, G. et al. Superfilamentation in air. Phys. Rev. Lett. 112, 223902 (2014).

    Article  ADS  Google Scholar 

  18. Mechain, G. et al. Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization. Appl. Phys. B 79, 379–382 (2004).

    Article  Google Scholar 

  19. Durand, M. et al. Kilometer range filamentation. Opt. Express 21, 26836–26845 (2013).

    Article  ADS  Google Scholar 

  20. Shim, B., Schrauth, S. E. & Gaeta, A. L. Filamentation in air with ultrashort mid-infrared pulses. Opt. Express 19, 9118–9126 (2011).

    Article  ADS  Google Scholar 

  21. Kartashov, D. et al. White light generation over three octaves by femtosecond filament at 3.9 μm in argon. Opt. Lett. 37, 3456–3458 (2012).

    Article  ADS  Google Scholar 

  22. Cheng, M., Reynolds, A., Widgren, H. & Khalil, M. Generation of tunable octave-spanning mid-infrared pulses by filamentation in gas media. Opt. Lett. 37, 1787–1789 (2012).

    Article  ADS  Google Scholar 

  23. Nomura, Y. et al. Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases. Opt. Express 20, 24741–24747 (2012).

    Article  ADS  Google Scholar 

  24. Kartashov, D. et al. Mid-infrared laser filamentation in molecular gases. Opt. Lett. 38, 3194–3197 (2013).

    Article  ADS  Google Scholar 

  25. Bergé, L., Rolle, J. & Köhler, C. Enhanced self-compression of mid-infrared laser filaments in argon. Phys. Rev. A 88, 023816 (2013).

    Article  ADS  Google Scholar 

  26. Skupin, S. & Bergé, L. Supercontinuum generation of ultrashort laser pulses in air at different central wavelengths. Opt. Commun. 280, 173–182 (2007).

    Article  ADS  Google Scholar 

  27. Bergé, L. Self-compression of 2 µm laser filaments. Opt Express 16, 21529–21543 (2008).

    Article  ADS  Google Scholar 

  28. Bespalov, V. I. & Talanov, V. I. Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307–310 (1966).

    ADS  Google Scholar 

  29. Akozbek, N. et al. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses. Phys. Rev. Lett. 89, 143901 (2002).

    Article  ADS  Google Scholar 

  30. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  31. Palmer, C. A. J. et al. Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014801 (2011).

    Article  ADS  Google Scholar 

  32. Hernández-García, C. et al. Zeptosecond high harmonic keV X-ray waveforms driven by midinfrared laser pulses. Phys. Rev. Lett. 111, 033002 (2013).

    Article  ADS  Google Scholar 

  33. Mitrofanov, A. V. et al. Mid-infrared laser filaments in the atmosphere. Sci. Rep. 5, 8368 (2015).

    Article  Google Scholar 

  34. Korteweg, D. J. & de Vries, G. XLI . On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39, 422–443 (1895).

    Article  MathSciNet  Google Scholar 

  35. Zabusky, N. J. & Kruskal, M. D. Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965).

    Article  ADS  Google Scholar 

  36. Whitham, G. B. Linear and Nonlinear Waves (Wiley, 1974).

    MATH  Google Scholar 

  37. Rosen, G. Electromagnetic shocks and the self-annihilation of intense linearly polarized radiation in an ideal dielectric material. Phys. Rev. 139, A539–A543 (1965).

    Article  ADS  Google Scholar 

  38. Flesch, R. G., Pushkarev, A. & Moloney, J. V. Carrier wave shocking of femtosecond optical pulses. Phys. Rev. Lett. 76, 2488–2491 (1996).

    Article  ADS  Google Scholar 

  39. Kinsler, P., Radnor, S. B. P., Tyrrell, J. C. A. & New, G. H. C. Optical carrier wave shocking: detection and dispersion. Phys. Rev. E 75, 066603 (2007).

    Article  ADS  Google Scholar 

  40. Kozlov, S. A. & Sazonov, S. V. Nonlinear propagation of optical pulses of a few oscillations duration in dielectric media. J. Exp. Theor. Phys. 84, 221–228 (1997).

    Article  ADS  Google Scholar 

  41. Whalen, P., Panagiotopoulos, P., Kolesik, M. & Moloney, J. V. Extreme carrier shocking of intense long-wavelength pulses. Phys. Rev. A 89, 023850 (2014).

    Article  ADS  Google Scholar 

  42. Kolesik, M. & Moloney, J. V. Nonlinear optical pulse propagation simulation: from Maxwell's to unidirectional equations. Phys. Rev. E 70, 036604 (2004).

    Article  ADS  Google Scholar 

  43. Couairon, A. et al. Practitioner's guide to laser pulse propagation models and simulation. Eur. Phys. J. Spec. Top. 199, 5–76 (2011).

    Article  Google Scholar 

  44. Wahlstrand, J., Cheng, Y.-H. & Milchberg, H. M. Absolute measurement of the transient optical nonlinearity in N2, O2, N2O, and Ar. Phys. Rev. A 85, 043820 (2012).

    Article  ADS  Google Scholar 

  45. Peck, E. R. & Reeder, K. Dispersion of air. J. Opt. Soc. Am. 62, 958–962 (1972).

    Article  ADS  Google Scholar 

  46. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314, (1965).

    Google Scholar 

  47. Mishima, K. et al. Generalization of Keldysh's theory. Phys. Rev. A 66, 033401 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Air Force Office of Scientific Research Multidisciplinary University Research Initiative (MURI; grant no. FA9550-10-1-0561).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development and/or implementation of the concept. P.P., P.W. and M.K. performed the numerical simulations and J.V.M. supervised the research. All authors contributed to the discussion of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Jerome V. Moloney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1246 kb)

Supplementary information

Supplementary information Movie 1 (MOV 4555 kb)

Supplementary information

Supplementary information Movie 2 (MOV 11415 kb)

Supplementary information

Supplementary information Movie 3 (MOV 3537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panagiotopoulos, P., Whalen, P., Kolesik, M. et al. Super high power mid-infrared femtosecond light bullet. Nature Photon 9, 543–548 (2015). https://doi.org/10.1038/nphoton.2015.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing