Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Seeing through chaos in multimode fibres

Abstract

In a similar fashion to diffusers or other highly scattering media, multimode fibres deliver coherent light signals in the form of apparently random speckled patterns. In contrast to other optically random environments, multimode fibres feature remarkably faithful cylindrical symmetry. Our experimental studies challenge the commonly held notion that classifies multimode fibres as unpredictable optical systems. Instead, we demonstrate that commercially available multimode fibres are capable of performing as extremely precise optical components. We show that, with a sufficiently accurate theoretical model, light propagation within straight or even significantly deformed segments of multimode fibres may be predicted up to distances in excess of hundreds of millimetres. Harnessing this newly discovered predictability in imaging, we demonstrate the unparalleled power of multimode fibre-based endoscopes, which offer exceptional performance both in terms of resolution and instrument footprint. These results thus pave the way for numerous exciting applications, including high-quality imaging deep inside motile organisms.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Analysing a short segment of fibre.
Figure 2: Polarization coupling effects in MMF.
Figure 3: Optical phases of PIMs.
Figure 4: Influence of fibre deformation.
Figure 5: Application to imaging.
Figure 6: Imaging with deformed fibre.

References

  1. Snyder, A. W. & Love, J. Optical Waveguide Theory (Springer, 1983).

    Google Scholar 

  2. Gloge, D. Weakly guiding fibers. Appl. Opt. 10, 2252–2258 (1971).

    ADS  Article  Google Scholar 

  3. Snitzer, E. Cylindrical dielectric waveguide modes. J. Opt. Soc. Am. 51, 491–498 (1961).

    ADS  MathSciNet  Article  Google Scholar 

  4. Liberman, V. S. & Zel'dovich, B. Y. Spin–orbit polarization effects in isotropic multimode fibres. Pure Appl. Opt. 2, 367–382 (1993).

    ADS  Article  Google Scholar 

  5. Di Leonardo, R. & Bianchi, S. Hologram transmission through multi-mode optical fibers. Opt. Express 19, 247–254 (2011).

    ADS  Article  Google Scholar 

  6. Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011).

    ADS  Article  Google Scholar 

  7. Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nature Commun. 3, 1027 (2012).

    ADS  Article  Google Scholar 

  8. Bianchi, S. & Di Leonardo, R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 12, 635–639 (2012).

    Article  Google Scholar 

  9. Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012).

    ADS  Article  Google Scholar 

  10. Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012).

    ADS  Article  Google Scholar 

  11. Mahalati, R. N., Gu, R. Y. & Kahn, J. M. Resolution limits for imaging through multi-mode fiber. Opt. Express 21, 1656–1668 (2013).

    ADS  Article  Google Scholar 

  12. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Article  Google Scholar 

  13. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Article  Google Scholar 

  14. Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

    ADS  Article  Google Scholar 

  15. Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 81 (2010).

    ADS  Article  Google Scholar 

  16. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  17. Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature Methods 7, 141–147 (2009).

    Article  Google Scholar 

  18. Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express 4, 260 (2013).

    Article  Google Scholar 

  19. Farahi, S., Ziegler, D., Papadopoulos, I. N., Psaltis, D. & Moser, C. Dynamic bending compensation while focusing through a multimode fiber. Opt. Express 21, 22504–22514 (2013).

    ADS  Article  Google Scholar 

  20. Gambling, W. A., Payne, D. N. & Matsumura, H. Mode conversion coefficients in optical fibers. Appl. Opt. 14, 1538–1542 (1975).

    ADS  Article  Google Scholar 

  21. Friesem, A. A., Levy, U. & Silberberg, Y. Parallel transmission of images through single optical fibers. Proc. IEEE 71, 208–221 (1983).

    Article  Google Scholar 

  22. Kreysing, M. et al. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nature Commun. 5, 5481 (2014).

    ADS  Article  Google Scholar 

  23. von Hoyningen-Huene, J., Ryf, R. & Winzer, P. LCoS-based mode shaper for few-mode fiber. Opt. Express 21, 18097–18110 (2013).

    ADS  Article  Google Scholar 

  24. Carpenter, J., Eggleton, B. J. & Schröder, J. 110×110 optical mode transfer matrix inversion. Opt. Express 22, 96–101 (2014).

    ADS  Article  Google Scholar 

  25. Leach, J., Padgett, M., Barnett, S., Franke-Arnold, S. & Courtial, J. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002).

    ADS  Article  Google Scholar 

  26. Bliokh, K. Y., Niv, A., Kleiner, V. & Hasman, E. Geometrodynamics of spinning light. Nature Photon. 2, 748–753 (2008).

    ADS  Article  Google Scholar 

  27. Lyytikäinen, K. et al. Dopant diffusion during optical fibre drawing. Opt. Express 12, 972–977 (2004).

    ADS  Article  Google Scholar 

  28. Gibson, B. C. et al. Controlled modification and direct characterization of multimode-fiber refractive-index profiles. Appl. Opt. 42, 627–633 (2003).

    ADS  Article  Google Scholar 

  29. Skinner, B. J. & Appleman, D. E. Melanophlogite, a cubic polymorph of silica. Am. Mineral. 48, 854–867 (1963).

    Google Scholar 

  30. Čižmár, T. & Dholakia, K. Tunable Bessel light modes: engineering the axial propagation. Opt. Express 17, 15558–15570 (2009).

    ADS  Article  Google Scholar 

  31. Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar 

Download references

Acknowledgements

T.Č. and M.P. acknowledge the Scottish Universities Physics Alliance (SUPA) (PaLS initiative) and the University of Dundee for funding. T.T. acknowledges support (grant no. P201/12/G028) by the Czech Science Foundation and SUPA Graduate School Distinguished Visitor Scheme. The authors thank H.I. Campbell Dalgarno, A. Danner and W.A. Gillespie for useful comments and proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.Č. conceived and led the project, designed the instrumentation, performed all experiments and wrote the manuscript with contributions from all authors. M.P. and T.T. developed the theoretical model. All authors contributed equally to analysis of the results.

Corresponding author

Correspondence to Tomáš Čižmár.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8471 kb)

Supplementary information

Supplementary Movie 1 (AVI 3168 kb)

Supplementary information

Supplementary Movie 2 (GIF 4902 kb)

Supplementary information

Supplementary Movie 3 (GIF 4411 kb)

Supplementary information

Supplementary Movie 4 (GIF 5594 kb)

Supplementary information

Supplementary Movie 5 (GIF 5922 kb)

Supplementary information

Supplementary Movie 6 (AVI 2056 kb)

Supplementary information

Supplementary Movie 7 (AVI 4209 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nature Photon 9, 529–535 (2015). https://doi.org/10.1038/nphoton.2015.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.112

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing