Abstract
In a similar fashion to diffusers or other highly scattering media, multimode fibres deliver coherent light signals in the form of apparently random speckled patterns. In contrast to other optically random environments, multimode fibres feature remarkably faithful cylindrical symmetry. Our experimental studies challenge the commonly held notion that classifies multimode fibres as unpredictable optical systems. Instead, we demonstrate that commercially available multimode fibres are capable of performing as extremely precise optical components. We show that, with a sufficiently accurate theoretical model, light propagation within straight or even significantly deformed segments of multimode fibres may be predicted up to distances in excess of hundreds of millimetres. Harnessing this newly discovered predictability in imaging, we demonstrate the unparalleled power of multimode fibre-based endoscopes, which offer exceptional performance both in terms of resolution and instrument footprint. These results thus pave the way for numerous exciting applications, including high-quality imaging deep inside motile organisms.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues
Nature Communications Open Access 02 August 2022
-
Quantitative phase imaging through an ultra-thin lensless fiber endoscope
Light: Science & Applications Open Access 05 July 2022
-
Spatiotemporal beam self-cleaning for high-resolution nonlinear fluorescence imaging with multimode fiber
Scientific Reports Open Access 14 September 2021
Access options
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.






References
Snyder, A. W. & Love, J. Optical Waveguide Theory (Springer, 1983).
Gloge, D. Weakly guiding fibers. Appl. Opt. 10, 2252–2258 (1971).
Snitzer, E. Cylindrical dielectric waveguide modes. J. Opt. Soc. Am. 51, 491–498 (1961).
Liberman, V. S. & Zel'dovich, B. Y. Spin–orbit polarization effects in isotropic multimode fibres. Pure Appl. Opt. 2, 367–382 (1993).
Di Leonardo, R. & Bianchi, S. Hologram transmission through multi-mode optical fibers. Opt. Express 19, 247–254 (2011).
Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011).
Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nature Commun. 3, 1027 (2012).
Bianchi, S. & Di Leonardo, R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 12, 635–639 (2012).
Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012).
Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012).
Mahalati, R. N., Gu, R. Y. & Kahn, J. M. Resolution limits for imaging through multi-mode fiber. Opt. Express 21, 1656–1668 (2013).
Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).
Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).
Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).
Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 81 (2010).
Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).
Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature Methods 7, 141–147 (2009).
Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express 4, 260 (2013).
Farahi, S., Ziegler, D., Papadopoulos, I. N., Psaltis, D. & Moser, C. Dynamic bending compensation while focusing through a multimode fiber. Opt. Express 21, 22504–22514 (2013).
Gambling, W. A., Payne, D. N. & Matsumura, H. Mode conversion coefficients in optical fibers. Appl. Opt. 14, 1538–1542 (1975).
Friesem, A. A., Levy, U. & Silberberg, Y. Parallel transmission of images through single optical fibers. Proc. IEEE 71, 208–221 (1983).
Kreysing, M. et al. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nature Commun. 5, 5481 (2014).
von Hoyningen-Huene, J., Ryf, R. & Winzer, P. LCoS-based mode shaper for few-mode fiber. Opt. Express 21, 18097–18110 (2013).
Carpenter, J., Eggleton, B. J. & Schröder, J. 110×110 optical mode transfer matrix inversion. Opt. Express 22, 96–101 (2014).
Leach, J., Padgett, M., Barnett, S., Franke-Arnold, S. & Courtial, J. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002).
Bliokh, K. Y., Niv, A., Kleiner, V. & Hasman, E. Geometrodynamics of spinning light. Nature Photon. 2, 748–753 (2008).
Lyytikäinen, K. et al. Dopant diffusion during optical fibre drawing. Opt. Express 12, 972–977 (2004).
Gibson, B. C. et al. Controlled modification and direct characterization of multimode-fiber refractive-index profiles. Appl. Opt. 42, 627–633 (2003).
Skinner, B. J. & Appleman, D. E. Melanophlogite, a cubic polymorph of silica. Am. Mineral. 48, 854–867 (1963).
Čižmár, T. & Dholakia, K. Tunable Bessel light modes: engineering the axial propagation. Opt. Express 17, 15558–15570 (2009).
Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).
Acknowledgements
T.Č. and M.P. acknowledge the Scottish Universities Physics Alliance (SUPA) (PaLS initiative) and the University of Dundee for funding. T.T. acknowledges support (grant no. P201/12/G028) by the Czech Science Foundation and SUPA Graduate School Distinguished Visitor Scheme. The authors thank H.I. Campbell Dalgarno, A. Danner and W.A. Gillespie for useful comments and proofreading of the manuscript.
Author information
Authors and Affiliations
Contributions
T.Č. conceived and led the project, designed the instrumentation, performed all experiments and wrote the manuscript with contributions from all authors. M.P. and T.T. developed the theoretical model. All authors contributed equally to analysis of the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 8471 kb)
Supplementary information
Supplementary Movie 1 (AVI 3168 kb)
Supplementary information
Supplementary Movie 2 (GIF 4902 kb)
Supplementary information
Supplementary Movie 3 (GIF 4411 kb)
Supplementary information
Supplementary Movie 4 (GIF 5594 kb)
Supplementary information
Supplementary Movie 5 (GIF 5922 kb)
Supplementary information
Supplementary Movie 6 (AVI 2056 kb)
Supplementary information
Supplementary Movie 7 (AVI 4209 kb)
Rights and permissions
About this article
Cite this article
Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nature Photon 9, 529–535 (2015). https://doi.org/10.1038/nphoton.2015.112
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2015.112
Further reading
-
Quantitative phase imaging through an ultra-thin lensless fiber endoscope
Light: Science & Applications (2022)
-
Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues
Nature Communications (2022)
-
Phonon imaging in 3D with a fibre probe
Light: Science & Applications (2021)
-
Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology
Light: Science & Applications (2021)
-
Memory effect assisted imaging through multimode optical fibres
Nature Communications (2021)