Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Watt-class high-power, high-beam-quality photonic-crystal lasers


The applications of surface-emitting lasers, in particular vertical-cavity surface-emitting lasers (VCSELs), are currently being extended to various low-power fields including communications and interconnections. However, the fundamental difficulties in increasing their output power by more than several milliwatts while maintaining single-mode operation prevent their application in high-power fields such as material processing, laser medicine and nonlinear optics, despite their advantageous properties of circular beams, the absence of catastrophic optical damage, and their suitability for two-dimensional integration. Here, we demonstrate watt-class high-power, single-mode operation by a two-dimensional photonic-crystal surface-emitting laser under room-temperature, continuous-wave conditions. The two-dimensional band-edge resonant effect of a photonic crystal formed by metal–organic chemical vapour deposition enables a 1,000 times broader coherent-oscillation area, which results in a high beam quality of M2 ≤ 1.1, narrowing the focus spot by two orders of magnitude compared to VCSELs. Our demonstration promises to realize innovative high-power applications for surface-emitting lasers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of the PCSEL structure and SEM images of a PC.
Figure 2: Lasing a characteristics of a PCSEL operated under room-temperature pulsed conditions.
Figure 3: Lasing characteristics of a PCSEL operated under room-temperature c.w. conditions.
Figure 4: Theoretical analysis and comparison with experiment.


  1. 1

    Jewell, J. L., Harbison, J. P., Scherer, A., Lee, Y.-H. & Florez, L. T. Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization. IEEE J. Quantum Electron. 27, 1332–1346 (1991).

    ADS  Article  Google Scholar 

  2. 2

    Seurin, J.-F. et al. High-power high-efficiency 2D VCSEL arrays. Proc. SPIE 6908, 690808 (2008).

    Article  Google Scholar 

  3. 3

    Grabherr, M. et al. High-power VCSELs: single devices and densely packed 2-D-arrays. IEEE J. Sel. Top. Quantum Electron. 5, 495–502 (1999).

    ADS  Article  Google Scholar 

  4. 4

    Haglund, Å ., Gustavsson, J. S., Vukušić, J., Modh, P. & Larsson, A. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief. IEEE Photon. Technol Lett. 16, 368–370 (2004).

    ADS  Article  Google Scholar 

  5. 5

    Gründl, T. et al. Record single-mode, high-power VCSELs by inhibition of spatial hole burning. IEEE J. Sel. Top. Quantum Electron. 19, 1700913 (2013).

    ADS  Article  Google Scholar 

  6. 6

    Siegman, A. E. New developments in laser resonators. Proc. SPIE 1224, 2–14 (1990).

    ADS  Article  Google Scholar 

  7. 7

    Siegman, A. E. Defining, measuring, and optimizing laser beam quality. Proc. SPIE 1868, 2–12 (1993).

    ADS  Article  Google Scholar 

  8. 8

    Orenstein, M., Kapon, E., Harbison, J., Florez, L. & Stoffel, N. Large two-dimensional arrays of phase-locked vertical cavity surface emitting lasers. Appl. Phys. Lett. 60, 1535–1537 (1992).

    ADS  Article  Google Scholar 

  9. 9

    Johnson, M. T., Siriani, D. F., Leisher, P. O. & Choquette, K. D. In-phase antiguided bottom-emitting vertical cavity laser arrays. Electron. Lett. 49, 897–898 (2013).

    Article  Google Scholar 

  10. 10

    Lu, L. et al. 120 µW peak output power from edge-emitting photonic crystal double- heterostructure nanocavity lasers. Appl. Phys. Lett. 75, 316–318 (1999).

    ADS  Article  Google Scholar 

  11. 11

    Danner, A. J., Kim, T. S. & Choquette, K. D. Single fundamental mode photonic crystal vertical cavity laser with improved output power. Electron. Lett. 41, 325–326 (2005).

    Article  Google Scholar 

  12. 12

    Kuznetsov, M., Hakimi, F., Sprague R. & Mooradian, A. High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE Photon. Technol. Lett. 9, 1063–1065 (1997).

    ADS  Article  Google Scholar 

  13. 13

    Imada, M. et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Appl. Phys. Lett. 75, 316–318 (1999).

    ADS  Article  Google Scholar 

  14. 14

    Meier, M. et al. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett. 74, 7–9 (1999).

    ADS  Article  Google Scholar 

  15. 15

    Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    ADS  Article  Google Scholar 

  16. 16

    Notomi, M., Suzuki, H. & Tamamura, T. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps. Appl. Phys. Lett. 78, 1325–1327 (2001).

    ADS  Article  Google Scholar 

  17. 17

    Imada, M., Chutinan, A., Noda, S. & Mochizuki, M. Multidirectionally distributed feedback photonic crystal lasers. Phys. Rev. B 65, 195306 (2002).

    ADS  Article  Google Scholar 

  18. 18

    Ryu, H.-Y., Kwon, S.-H., Lee, Y.-J., Lee, Y.-H. & Kim, J.-S. Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs. Appl. Phys. Lett. 80, 3476–3478 (2002).

    ADS  Article  Google Scholar 

  19. 19

    Yokoyama, M. & Noda, S. Polarization mode control of two-dimensional photonic crystal laser having a square lattice structure. IEEE J. Quantum Electron. 39, 1074–1080 (2003).

    ADS  Article  Google Scholar 

  20. 20

    Vurgaftman, I. & Meyer, J. R. Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers. IEEE J. Quantum Electron. 39, 689–700 (2003).

    ADS  Article  Google Scholar 

  21. 21

    Ohnishi, D., Okano, T., Imada, M. & Noda, S. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser. Opt. Express 12, 1562–1568 (2004).

    ADS  Article  Google Scholar 

  22. 22

    Miyai, E. et al. Lasers producing tailored beams. Nature 441, 946 (2006).

    ADS  Article  Google Scholar 

  23. 23

    Matsubara, H. et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths. Science 319, 445–447 (2008).

    ADS  Article  Google Scholar 

  24. 24

    Miyai, E. et al. Linearly polarized single-lobed beam in a surface-emitting photonic-crystal laser. Appl. Phys. Express 1, 062002 (2008).

    ADS  Article  Google Scholar 

  25. 25

    Kurosaka, Y., Sakai, K., Miyai, E. & Noda, S. Controlling vertical optical confinement in two-dimensional surface-emitting photonic-crystal lasers by shape of air holes. Opt. Express 16, 18485–18494 (2008).

    ADS  Article  Google Scholar 

  26. 26

    Kurosaka, Y. et al. On-chip beam-steering photonic-crystal lasers. Nature Photon. 4, 447–450 (2010).

    ADS  Article  Google Scholar 

  27. 27

    Iwahashi, S., Sakai, K., Kurosaka, Y. & Noda, S. Air-hole design in a vertical direction for high-power two-dimensional photonic-crystal surface-emitting lasers. J. Opt. Soc. Am. B 27, 1204–1207 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Iwahashi S. et al. Higher-order vector beams produced by photonic-crystal lasers. Opt. Express 19, 11963–11968 (2011).

    ADS  Article  Google Scholar 

  29. 29

    Kashiwagi, J. et al. High-power single-mode operation of surface-emitting two-dimensional photonic-crystal laser. 54th Spring Meeting of the Japan Society of Applied Physics Sagamihara, Japan, 27–30 March 2007, Paper 27p–ZB-6.

  30. 30

    Sakaguchi, T. et al. Surface-emitting photonic-crystal lasers with 35 W peak power. Technical Digest of Conference of Lasers and Electro-Optics (CLEO) CTuH1 (2009).

  31. 31

    Liang, Y., Peng, C., Sakai, K., Iwahashi, S. & Noda, S. Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: a general approach. Phys. Rev. B 84, 195119 (2011).

    ADS  Article  Google Scholar 

  32. 32

    Peng, C., Liang, Y., Sakai, K., Iwahashi, S. & Noda, S. Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls. Opt. Express 19, 24672–24686 (2011).

    ADS  Article  Google Scholar 

  33. 33

    Liang, Y., Peng, C., Sakai, K., Iwahashi, S. & Noda, S. Three-dimensional coupled-wave analysis for square-lattice photonic-crystal lasers with transverse electric polarization: finite-size effects. Opt. Express 20, 15945–15961 (2012).

    ADS  Article  Google Scholar 

  34. 34

    Kardosh, I. & Rinaldi, F. Beam Properties and M2 Measurements of High-Power VCSELs. (Univ. of Ulm, 2004); available at

  35. 35

    Wilson, G. C., Kuchta, D. M., Walker, J. D. & Smith, J. S. Spatial hole burning and self-focusing in vertical-cavity surface-emitting laser diodes. Appl. Phys. Lett. 64, 542–544 (1994).

    ADS  Article  Google Scholar 

  36. 36

    Young, E. W. et al. Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation. Photon. Technol. Lett. 13, 927–929 (2001).

    ADS  Article  Google Scholar 

  37. 37

    Degen, C., Fischer, I. & Elsäßer, W. Transverse modes in oxide confined VCSELs: influence of pump profile, spatial hole burning, and thermal effects. Opt. Express 5, 38–47 (1999).

    ADS  Article  Google Scholar 

  38. 38

    Liang, Y. et al. Mode stability in photonic-crystal surface-emitting lasers with large κ1DL. Appl. Phys. Lett. 104, 021102 (2014).

    ADS  Article  Google Scholar 

  39. 39

    Okai, M., Tsuchiya, T., Uomi, K., Chinone, N. & Harada, T. Corrugation-pitch-modulated MQW-DFB laser with narrow spectral linewidth (170 kHz). IEEE Photon. Technol. Lett. 2, 529–530 (1990).

    ADS  Article  Google Scholar 

  40. 40

    Morthier, G., David, K., Vankwikelberge, P. & Baets, R. A new DFB-laser diode with reduced spatial hole burning. IEEE Photon. Technol. Lett. 2, 388–389 (1990).

    ADS  Article  Google Scholar 

  41. 41

    Usami, M. & Akiba, S. Suppression of longitudinal spatial hole-burning effect in λ/4-shifted DFB lasers by nonuniform current distribution. IEEE J. Quantum Electron. 25, 1245–1253 (1989).

    ADS  Article  Google Scholar 

  42. 42

    Sakai, K. et al. Lasing band-edge identification for a surface-emitting photonic crystal laser. IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005).

    Article  Google Scholar 

  43. 43

    Sakai, K., Miyai, E. & Noda, S. Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode. Appl. Phys. Lett. 89, 021101 (2006).

    ADS  Article  Google Scholar 

Download references


The authors thank A. Higuchi, S. Furuta and M. Hitaka for assistance with epitaxial growth of the device, K. Shibata for assistance with the fabrication process and N. Kageyama for measurements on the device. The authors also thank K. Ishizaki for help with the electron-beam lithography process and J. Gelleta for valuable suggestions. This work was supported in part by C-PhoST, MEXT, Japan.

Author information




S.N. directed the work. K.H. fabricated the device with T.S., and performed the experiments with A.W. Y.L. conducted the theoretical analysis of the device. Y.K. measured the band structure of the device. K.H. and Y.L. wrote the manuscript with S.N.

Corresponding authors

Correspondence to Kazuyoshi Hirose or Susumu Noda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1046 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hirose, K., Liang, Y., Kurosaka, Y. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nature Photon 8, 406–411 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing