Abstract
Monolithic integration of optoelectronics with electronics is a much-desired functionality. Here, we demonstrate that it is possible to realize low-loss Ge quantum-well photonic interconnects on Si wafers. We show that Ge-rich Si1–xGex virtual substrates can act as a passive, high-quality optical waveguide on which low-temperature, epitaxial growth of Ge quantum-well devices can be realized. As a proof of concept, the photonic integration of a passive Si0.16Ge0.84 waveguide and two Ge/SiGe multi-quantum-well active devices, an optical modulator and a photodetector was realized to form a photonic interconnect using a single epitaxial growth step. This demonstration confirms that Ge quantum-well interconnects are feasible for low-voltage, broadband optical links integrated on Si chips. Our approach can be extended to any kind of Ge-based optoelectronic device working within telecommunication wavelengths as long as a suitable Ge concentration is selected for the Ge-rich virtual substrate.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band
Light: Science & Applications Open Access 21 November 2019
-
Spatially controlled electrostatic doping in graphene p-i-n junction for hybrid silicon photodiode
npj 2D Materials and Applications Open Access 02 November 2018
-
Quantum cascade lasers grown on silicon
Scientific Reports Open Access 08 May 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Kirchain, R. & Kimerling, L. A roadmap for nanophotonics. Nature Photon. 1, 303–305 (2007).
Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).
Wada, K. A new approach of electronics and photonics convergence on Si CMOS platform: how to reduce device diversity of photonics for integration. Adv. Opt. Technol. 2008, 807457 (2008).
Kuo, Y., Chen, H.-W. & Bowers, J. E. High speed hybrid silicon evanescent electroabsorption modulator. Opt. Express 16, 9936–9941 (2008).
Fang, A. W. et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).
Van Campenhout, J. et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 6744–6749 (2007).
Kuo, Y.-H. et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 437, 1334–1336 (2005).
Chaisakul, P. et al. Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures. Opt. Lett. 35, 2913–2915 (2010).
Assefa, S. et al. CMOS-integrated high-speed MSM germanium waveguide photodetector. Opt. Express 18, 4986–4999 (2010).
Liu, J. et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photon. 2, 433–437 (2008).
Feng, D. et al. High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. Opt. Express 20, 22224–22232 (2012).
Feng, D. et al. High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide. Appl. Phys. Lett. 95, 261105 (2009).
Lim, A. E. J. et al. Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p–i–n photodetector. Opt. Express 19, 5040–5046 (2011).
Vivien, L. et al. Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. Opt. Express 20, 1096–1101 (2012).
DeRose, C. T. et al. Ultra compact 45 GHz CMOS compatible germanium waveguide photodiode with low dark current. Opt. Express 19, 24897–24904 (2011).
Ren, S. et al. Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides. IEEE Photon. Technol. Lett. 24, 461–463 (2012).
Edwards, E. H. et al. Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon. Opt. Express 21, 867–876 (2013).
Park, S. et al. Monolithic integration and synchronous operation of germanium photodetectors and silicon variable optical attenuators. Opt. Express 18, 8412–8421 (2010).
Ren, S., Rong, Y., Kamins, T. I., Harris, J. S. & Miller, D. A. B. Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition. Appl. Phys. Lett. 98, 151108 (2011).
Klinger, S., Berroth, M., Kaschel, M., Oehme, M. & Kasper, E. Ge-on-Si p–i–n photodiodes with a 3-dB bandwidth of 49 GHz. IEEE Photon. Technol. Lett. 21, 920–922 (2009).
Chaisakul, P. et al. 23 GHz Ge/SiGe multiple quantum well electro-absorption modulator. Opt. Express 20, 3219–3224 (2012).
Chaisakul, P. et al. Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth. Appl. Phys. Lett. 98, 131112 (2011).
Luan, H.-C. et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett. 75, 2909–2911 (1999).
Orcutt, J. S. et al. Nanophotonic integration in state-of-the-art CMOS foundries. Opt. Express 19, 2335–2346 (2011).
Pinguet, T., Analui, B., Masini, G., Sadagopan, V. & Gloeckner, S. 40-Gbps monolithically integrated transceivers in CMOS photonics. Proc. SPIE 6898, 689805 (2008).
Masini, G., Capellini, G., Witzens, J. & Gunn, C. High-speed, monolithic CMOS receivers at 1550 nm with Ge on Si waveguide photodetectors. Proc. Laser Elect. Opt. Soc., 848–849 (2007).
Bresson, N., Cristoloveanu, S., Mazuré, C., Letertre, F. & Iwai, H. Integration of buried insulators with high thermal conductivity in SOI MOSFETs: thermal properties and short channel effects. Solid-State Electron. 49, 1522–1528 (2005).
Sherwood-Droz, N., Gondarenko, A. & Lipson, M. Oxidized silicon-on-insulator (OxSOI) from bulk silicon: a new photonic platform. Opt. Express 18, 5785–5790 (2010).
Pan, H. et al. High-speed receiver based on waveguide germanium photodetector wire-bonded to 90nm SOI CMOS amplifier. Opt. Express 20, 18145–18155 10.1364/OE.20.018145 (2012).
Zheng, X. et al. A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems. Opt. Express 18, 204–211 10.1364/OE.18.000204 (2010).
McComber, K. A., Duan, X., Liu, J., Michel, J. & Kimerling, L. C. Single-crystal germanium growth on amorphous silicon. Adv. Funct. Mater. 22, 1049–1057 (2012).
Braunstein, R., Moore, A. R. & Herman, F. Intrinsic optical absorption in germanium–silicon alloys. Phys. Rev. 109, 695–710 (1958).
Isella, G. et al. Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices. Solid-State Electron. 48, 1317–1323 10.1016/j.sse.2004.01.013 (2004).
Falub, C. V. et al. Scaling hetero-epitaxy from layers to three-dimensional crystals. Science 335, 1330–1334 (2012).
Frigerio, J. et al. Electro-refractive effect in Ge/SiGe multiple quantum wells. Appl. Phys. Lett. 102, 061102 (2013).
Spiekman, L. H. et al. Ultrasmall waveguide bends: the corner mirrors of the future? IEE Proc. Optoelectron. 142, 61–65 (1995).
Akiyama, S. et al. Air trench waveguide bend for high density optical integration. Proc. SPIE 5355, 14–21 (2004).
Schaevitz, R. K. et al. Simple electroabsorption calculator for designing 1310 nm and 1550 nm modulators using germanium quantum wells. IEEE J. Quantum Electron. 48, 187–197 (2012).
Chaisakul, P. et al. 10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector. IEEE Photon. Technol. Lett. 23, 1430–1432 (2011).
Lever, L. et al. Modulation of the absorption coefficient at 1.3 µm in Ge/SiGe multiple quantum well heterostructures on silicon. Opt. Lett. 36, 4158–4160 (2011).
Lever, L., Ikonic, Z., Valavanis, A., Cooper, J. D. & Kelsall, R. W. Design of Ge-SiGe quantum-confined Stark effect electroabsorption heterostructures for CMOS compatible photonics. J. Lightwave Technol. 28, 3273–3281 (2010).
Hofrichter, J. et al. A low-power high-speed InP microdisk modulator heterogeneously integrated on a SOI waveguide. Opt. Express 20, 9363–9370 (2012).
Tang, Y. et al. 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator. Opt. Express 19, 5811–5816 (2011).
Harris, N. C. et al. Noise characterization of a waveguide-coupled MSM photodetector exceeding unity quantum efficiency. J. Lightwave Technol. 31, 23–27 (2013).
Cassan, E., Marris-Morini, D., Rouvière, M., Vivien, L. & Laval, S. C. Comparison between electrical and optical global clock distributions for CMOS integrated circuits. Opt. Eng. 44, 105402 (2005).
Acknowledgements
This research received funding from the French ANR under project GOSPEL (Direct Gap Related Optical Properties of Ge/SiGe Multiple Quantum Wells) and from the European Commission (EC) through project Green Silicon. The fabrication of the device was performed at the nano-center CTU-IEF-Minerve, which is partially funded by the ‘Conseil Général de l'Essonne’. This work was partly supported by the French RENATECH network.
Author information
Authors and Affiliations
Contributions
P.Ch., D.M.-M. and L.V. conceived the project. P.Ch. designed and fabricated the tested devices, conducted the experiments and performed optical simulations. P.Ch. and D.M.-M. analysed the experimental data. J.F. carried out epitaxial growth and band diagram calculations. D.C. and S.C. performed HR-XRD measurements and analysis. S.C. participated in the epitaxial growth. P.Cr. participated in device characterization. All authors contributed to manuscript preparation. D.M.-M., G.I. and L.V. supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Chaisakul, P., Marris-Morini, D., Frigerio, J. et al. Integrated germanium optical interconnects on silicon substrates. Nature Photon 8, 482–488 (2014). https://doi.org/10.1038/nphoton.2014.73
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2014.73
This article is cited by
-
High gain, broadband p-WSe2/n-Ge van der Waals heterojunction phototransistor with a Schottky barrier collector
Nano Research (2022)
-
Whispering gallery modes enhance the near-infrared photoresponse of hourglass-shaped silicon nanowire photodiodes
Nature Electronics (2019)
-
Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band
Light: Science & Applications (2019)
-
Spatially controlled electrostatic doping in graphene p-i-n junction for hybrid silicon photodiode
npj 2D Materials and Applications (2018)
-
Quantum cascade lasers grown on silicon
Scientific Reports (2018)