Two-dimensional material nanophotonics


Two-dimensional materials exhibit diverse electronic properties, ranging from insulating hexagonal boron nitride and semiconducting transition metal dichalcogenides such as molybdenum disulphide, to semimetallic graphene. In this Review, we first discuss the optical properties and applications of various two-dimensional materials, and then cover two different approaches for enhancing their interactions with light: through their integration with external photonic structures, and through intrinsic polaritonic resonances. Finally, we present a narrow-bandgap layered material — black phosphorus — that serendipitously bridges the energy gap between the zero-bandgap graphene and the relatively large-bandgap transition metal dichalcogenides. The plethora of two-dimensional materials and their heterostructures, together with the array of available approaches for enhancing the light–matter interaction, offers the promise of scientific discoveries and nanophotonics technologies across a wide range of the electromagnetic spectrum.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: 2D materials covering a broad spectral range.
Figure 2: Photocurrent-generation mechanisms in graphene.
Figure 3: Optoelectronic properties of semiconducting TMDC monolayers.
Figure 4: Using photonic integration to enhance the interaction between light and 2D materials.
Figure 5: Using polaritonic resonances to enhance the interaction between light and 2D materials.
Figure 6: Bridging the bandgap using BP.


  1. 1

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    ADS  Article  Google Scholar 

  2. 2

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    ADS  Google Scholar 

  3. 3

    Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    ADS  Google Scholar 

  4. 4

    Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    ADS  Article  Google Scholar 

  5. 5

    Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    ADS  Article  Google Scholar 

  6. 6

    Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    ADS  Article  Google Scholar 

  7. 7

    Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    ADS  Article  Google Scholar 

  8. 8

    Bao, Q. et al. Broadband graphene polarizer. Nature Photon. 5, 411–415 (2011).

    ADS  Article  Google Scholar 

  9. 9

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    ADS  Google Scholar 

  10. 10

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    ADS  Article  Google Scholar 

  11. 11

    Mak, K. F. et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem. 5, 263–275 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014).

    ADS  Article  Google Scholar 

  16. 16

    Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    ADS  Article  Google Scholar 

  17. 17

    Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon. 7, 883–887 (2013).

    ADS  Article  Google Scholar 

  18. 18

    Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photon. 7, 888–891 (2013).

    ADS  Article  Google Scholar 

  19. 19

    Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon. 7, 892–896 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

    ADS  Article  Google Scholar 

  21. 21

    Gan, X. et al. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett. 12, 5626–5631 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Majumdar, A., Kim, J., Vuckovic, J. & Wang, F. Electrical control of silicon photonic crystal cavity by graphene. Nano Lett. 13, 515–518 (2013).

    ADS  Article  Google Scholar 

  23. 23

    Gan, X. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013).

    ADS  Article  Google Scholar 

  24. 24

    Sobhani, A. et al. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. 104, 031112 (2014).

    ADS  Article  Google Scholar 

  25. 25

    Geim, A. K. & Grigorieva. Van der Waals heterostructures. Nature 499, 419–425 (2014).

    Article  Google Scholar 

  26. 26

    Eda, G. & Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 7, 5660–5665 (2013).

    Article  Google Scholar 

  27. 27

    Mak, K. F., Ju, L., Wang, F. & Heinz, T. F. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Sol. State Commun. 152, 1341–1349 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Xia, F., Yan, H. & Avouris, P. The interaction of light and graphene: Basics, devices, and applications. Proc. IEEE 101, 1717–1731 (2013).

    Article  Google Scholar 

  29. 29

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    ADS  Article  Google Scholar 

  30. 30

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    ADS  Article  Google Scholar 

  31. 31

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    ADS  Article  Google Scholar 

  32. 32

    Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    ADS  Article  Google Scholar 

  33. 33

    Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

    ADS  Article  Google Scholar 

  34. 34

    Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    ADS  Article  Google Scholar 

  35. 35

    Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008).

    ADS  Article  Google Scholar 

  36. 36

    Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    ADS  Article  Google Scholar 

  37. 37

    Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    ADS  Article  Google Scholar 

  38. 38

    Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2009).

    ADS  Article  Google Scholar 

  39. 39

    Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

    ADS  Article  Google Scholar 

  40. 40

    Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    ADS  Article  Google Scholar 

  41. 41

    George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).

    ADS  Article  Google Scholar 

  42. 42

    Sun, D. et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402 (2008).

    ADS  Article  Google Scholar 

  43. 43

    Kim, R., Perebeinos, V. & Avouris, P. Relaxation of optically excited carriers in graphene. Phys. Rev. B 84, 075449 (2011).

    ADS  Article  Google Scholar 

  44. 44

    Winzer, T., Knorr, A. & Malić, E. Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010).

    ADS  Article  Google Scholar 

  45. 45

    Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Phys. 9, 248–252 (2013).

    ADS  Article  Google Scholar 

  46. 46

    Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    ADS  Article  Google Scholar 

  47. 47

    Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2013).

    ADS  Article  Google Scholar 

  48. 48

    Shi, S.-F. et al. Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating. Nano Lett. 14, 1578–1582 (2014).

    ADS  Article  Google Scholar 

  49. 49

    Tan, Y.-W., Zhang, Y., Stormer, H. L. & Kim, P. Temperature dependent electron transport in graphene. Eur. Phys. J. Spec. Top. 148, 15–18 (2007).

    Article  Google Scholar 

  50. 50

    He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 13, 2931–2936 (2013).

    ADS  Article  Google Scholar 

  51. 51

    Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2 . Nano Lett. 13, 5361–5366 (2013).

    ADS  Article  Google Scholar 

  52. 52

    Ramasubramaniam, A., Naveh, D. & Towe, E. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B 84, 205325 (2011).

    ADS  Article  Google Scholar 

  53. 53

    Duerloo, K. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nature Commun. 5, 4214 (2014).

    ADS  Article  Google Scholar 

  54. 54

    Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    ADS  Article  Google Scholar 

  55. 55

    Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nature Nanotech. 9, 268–272 (2014).

    ADS  Article  Google Scholar 

  56. 56

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenides. Nature Nanotech. 9, 262–267 (2014).

    ADS  Article  Google Scholar 

  57. 57

    Pospischil, A., Furchi, M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nature Nanotech. 9, 257–261 (2014).

    ADS  Article  Google Scholar 

  58. 58

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013).

    ADS  Article  Google Scholar 

  59. 59

    Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J. & Shih, C.-K. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states and edge band bending. Nano Lett. 14, 2243–2247 (2014).

    Google Scholar 

  60. 60

    Chernikov, A. et al. Exciton binding energy and non-hydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    ADS  Article  Google Scholar 

  61. 61

    Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2012).

    ADS  Article  Google Scholar 

  62. 62

    Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013).

    ADS  Article  Google Scholar 

  63. 63

    Yu, H., Liu, G.-B., Gong, P., Xu, X. & Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nature Commun. 5, 3876 (2014).

    ADS  Article  Google Scholar 

  64. 64

    Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    ADS  Article  Google Scholar 

  65. 65

    Fortin, E. & Sears, W. M. Photovoltaic effect and optical absorption in MoS2 . J. Phys. Chem. Solids 43, 881–884 (1982).

    ADS  Article  Google Scholar 

  66. 66

    Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013).

    ADS  Article  Google Scholar 

  67. 67

    Konstantatos, G. et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363–368 (2012).

    ADS  Article  Google Scholar 

  68. 68

    Roy, K. et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nature Nanotech. 8, 826–830 (2013).

    ADS  Article  Google Scholar 

  69. 69

    Maier, S. Plasmonics: Fundamentals and Applications 1st edn (Springer, 2007).

    Google Scholar 

  70. 70

    Wunsch, B., Stauber, T. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

    ADS  Article  Google Scholar 

  71. 71

    Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    ADS  Article  Google Scholar 

  72. 72

    Abedinpour, S. et al. Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets. Phys. Rev. B 84, 045429 (2011).

    ADS  Article  Google Scholar 

  73. 73

    Thongrattanasiri, S., Manjavacas, A. & Garcia de Abajo, F. J. Quantum finite-size effects in graphene plasmons. ACS Nano 6, 1766–1775 (2012).

    Article  Google Scholar 

  74. 74

    Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    ADS  Article  Google Scholar 

  75. 75

    Koppens, F. H. L., Chang, D. E. & Garcia de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    ADS  Article  Google Scholar 

  76. 76

    Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    ADS  Article  Google Scholar 

  77. 77

    Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    ADS  Article  Google Scholar 

  78. 78

    Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    ADS  Article  Google Scholar 

  79. 79

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    ADS  Article  Google Scholar 

  80. 80

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  Article  Google Scholar 

  81. 81

    Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nature Photon. 7, 394–399 (2013).

    ADS  Article  Google Scholar 

  82. 82

    Brar, V. W., Jang, M. S., Sherrott, M., Lopez, J. J. & Atwater, H. A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013).

    ADS  Article  Google Scholar 

  83. 83

    Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    ADS  Article  Google Scholar 

  84. 84

    Liu, Y. & Willis, R. F. Plasmon–phonon strongly coupled mode in epitaxial graphene. Phys. Rev. B 81, 081406 (2010).

    ADS  Article  Google Scholar 

  85. 85

    Brar, V. W. et al. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett. 14, 3876–3880 (2014).

    ADS  Article  Google Scholar 

  86. 86

    Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

    ADS  Article  Google Scholar 

  87. 87

    Liu, H. et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  Google Scholar 

  88. 88

    Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    ADS  Article  Google Scholar 

  89. 89

    Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Commun. 5, 4458 (2014).

    ADS  Article  Google Scholar 

  90. 90

    Koenig, S., Doganov, R., Schmidt, H., Castro Neto, A. & Ozyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    ADS  Article  Google Scholar 

  91. 91

    Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).

    ADS  Article  Google Scholar 

  92. 92

    Qiao, J., Kong, X., Hu, Z., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Commun. 5, 4475 (2014).

    ADS  Article  Google Scholar 

  93. 93

    Low, T. et al. Tunable optical properties of multilayers black phosphorus thin films. Phys. Rev. B 90, 075434 (2014).

    ADS  Article  Google Scholar 

  94. 94

    Low, T. et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett. 113, 106802 (2014).

    ADS  Article  Google Scholar 

  95. 95

    Fei, R. et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. (2014).

  96. 96

    Yu, L. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14, 3055–3063 (2014).

    ADS  Article  Google Scholar 

  97. 97

    Osters, O. et al. Synthesis and identification of metastable compounds: Black arsenic — science or fiction? Angew. Chemie 51, 2994–2997 (2012).

    Article  Google Scholar 

Download references


We thank X. Xu at the University of Washington, Seattle and M. Dresselhaus at Massachusetts Institute of Technology for insightful comments. We would also like to thank T. Low at the University of Minnesota for his input at the early stage of this project and L. Wang at the University of Southern California for designing Fig. 6c,d. F.X. acknowledges support from the Office of Naval Research (N00014-14-1-0565), the Air Force Office of Scientific Research (FA9550-14-1-0277) and the National Science Foundation (CRISP NSF MRSEC DMR-1119826). H.W. acknowledges support from the Army Research Laboratory (W911NF-14-2-0113). D.X. acknowledges support from the Department of Energy (SC0012509), the Air Force Office of Scientific Research (FA9550-14-1-0277), and the National Science Foundation (EFRI-1433496).

Author information




F.X. and H.W. led the project. All authors contributed significantly to the preparation of the manuscript.

Corresponding author

Correspondence to Fengnian Xia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, F., Wang, H., Xiao, D. et al. Two-dimensional material nanophotonics. Nature Photon 8, 899–907 (2014).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing