Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom

Abstract

Realizing a strong interaction between individual photons is an important objective of research in quantum science and technology. It requires an optical medium in which light experiences a phase shift that depends nonlinearly on the photon number. Once the additional two-photon phase shift reaches π, such an ultra-strong nonlinearity could enable the implementation of high-fidelity quantum logic operations. However, the nonlinear response of standard optical media is orders of magnitude too weak. Here, we demonstrate a fibre-based nonlinearity that realizes an additional two-photon phase shift close to the ideal value of π. We employ a whispering-gallery-mode resonator, interfaced by an optical nanofibre, where the presence of a single rubidium atom in the resonator mode results in a strongly nonlinear response. We show that this results in entanglement of initially uncorrelated incident photons. This demonstration of a fibre-integrated, ultra-strong nonlinearity is a decisive step towards photon-based scalable quantum logics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up showing the bottle microresonator and the coupling fibre.
Figure 2: Single photon polarization change.
Figure 3: Tomographic data.
Figure 4: State tomography of transmitted light.

References

  1. 1

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    ADS  Article  Google Scholar 

  2. 2

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    ADS  Article  Google Scholar 

  4. 4

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Article  Google Scholar 

  5. 5

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    ADS  Article  Google Scholar 

  6. 6

    Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

    ADS  Article  Google Scholar 

  7. 7

    Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

    ADS  Article  Google Scholar 

  8. 8

    Lee, M.-J., Chen, Y.-H., Wang, I.-C. & Yu, I. A. EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing. Opt. Express 20, 11057–11063 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Bajcsy, M. et al. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009).

    ADS  Article  Google Scholar 

  10. 10

    Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11

    Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).

    ADS  Article  Google Scholar 

  13. 13

    O'Shea, D., Junge, C., Volz, J. & Rauschenbeutel, A. Fiber-optical switch controlled by a single atom. Phys. Rev. Lett. 111, 193601 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Tanji-Suzuki, H., Chen, W., Landig, R., Simon, J. & Vuletic, V. Vacuum-induced transparency. Science 333, 1266–1269 (2011).

    ADS  Article  Google Scholar 

  15. 15

    Reinhard, A. et al. Strongly correlated photons on a chip. Nature Photon. 6, 93–96 (2012).

    ADS  Article  Google Scholar 

  16. 16

    Hofmann, H. F., Kojima, K., Takeuchi, S. & Sasaki, K. Optimized phase switching using a single-atom nonlinearity. J. Opt. B 5, 218–221 (2003).

    ADS  Article  Google Scholar 

  17. 17

    Sumetsky, M. Whispering-gallery-bottle microcavities: the three-dimensional etalon. Opt. Lett. 29, 8–10 (2004).

    ADS  Article  Google Scholar 

  18. 18

    Louyer, Y., Meschede, D. & Rauschenbeutel, A. Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics. Phys. Rev. A 72, 031801 (2005).

    ADS  Article  Google Scholar 

  19. 19

    Pöllinger, M., O'Shea, D., Warken, F. & Rauschenbeutel, A. Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys. Rev. Lett. 103, 053901 (2009).

    ADS  Article  Google Scholar 

  20. 20

    Braginsky, V., Gorodetsky, M. & Ilchenko, V. Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A 137, 393–397 (1989).

    ADS  Article  Google Scholar 

  21. 21

    Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    ADS  Article  Google Scholar 

  22. 22

    Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

    ADS  Article  Google Scholar 

  23. 23

    Junge, C., O'Shea, D., Volz, J. & Rauschenbeutel, A. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013).

    ADS  Article  Google Scholar 

  24. 24

    James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    ADS  Article  Google Scholar 

  25. 25

    Hill, S. & Wootters, W. K. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997).

    ADS  Article  Google Scholar 

  26. 26

    Adamson, R. B. A., Shalm, L. K., Mitchell, M. W. & Steinberg, A. M. Multiparticle state tomography: hidden differences. Phys. Rev. Lett. 98, 043601 (2007).

    ADS  Article  Google Scholar 

  27. 27

    Witthaut, D., Lukin, M. D. & Sorensen, A. S. Photon sorters and QND detectors using single photon emitters. Eur. Phys. Lett. 97, 50007 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Shapiro, J. H., Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006).

    ADS  Article  Google Scholar 

  29. 29

    Rosenblum, S., Parkins, S. & Dayan, B. Photon routing in cavity QED: beyond the fundamental limit of photon blockade. Phys. Rev. A 84, 033854 (2011).

    ADS  Article  Google Scholar 

  30. 30

    Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    ADS  Article  Google Scholar 

  31. 31

    Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013).

    ADS  Article  Google Scholar 

  32. 32

    Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    ADS  Article  Google Scholar 

  33. 33

    Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    ADS  Article  Google Scholar 

  34. 34

    Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013).

    ADS  Article  Google Scholar 

  35. 35

    Gardiner, C. W. & Collett, M. J. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761–3774 (1985).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Science Foundation (EURYI Award), the Volkswagen Foundation (Lichtenberg Professorship), the Austrian Science Fund (FWF; SFB FoQuS project no. F 4017 and DK CoQuS project no. W 1210-N16) and the European Commission (IP SIQS, No. 600645). J.V. acknowledges support from the European Commission (Marie Curie IEF grant 300392) and C.J. acknowledges support from the German National Academic Foundation. The authors thank the groups of P. Walther and J. Schmiedmayer for the loan of single photon-counting modules.

Author information

Affiliations

Authors

Contributions

All authors contributed to the experiment, the analysis of the results and the writing of the manuscript.

Corresponding authors

Correspondence to Jürgen Volz or Arno Rauschenbeutel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 939 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volz, J., Scheucher, M., Junge, C. et al. Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nature Photon 8, 965–970 (2014). https://doi.org/10.1038/nphoton.2014.253

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing