Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological photonics

Abstract

The application of topology, the mathematics of conserved properties under continuous deformations, is creating a range of new opportunities throughout photonics. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation, even in the presence of impurities. Similarly, the use of carefully designed wavevector-space topologies allows the creation of interfaces that support new states of light with useful and interesting properties. In particular, this suggests unidirectional waveguides that allow light to flow around large imperfections without back-reflection. This Review explains the underlying principles and highlights how topological effects can be realized in photonic crystals, coupled resonators, metamaterials and quasicrystals.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Topological phase transition.
Figure 2: Topological phase diagram of the 2D quantum Hall phase.
Figure 3: First experimental demonstration of the topologically protected one-way edge waveguide at microwave frequencies.
Figure 4: Quantum Hall phase of electrons in a magnetic field and of photons in coupled resonators exhibiting an effective magnetic field.
Figure 5: Phase diagram of line nodes and Weyl points in gyroid photonic crystals.

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Google Scholar 

  2. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  Google Scholar 

  3. Haldane, F. D. M. Model for a quantum Hall effect without landau levels: Condensed-matter realization of the 'parity anomaly'. Phys. Rev. Lett. 61, 2015–2018 (1988).

    ADS  MathSciNet  Google Scholar 

  4. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    ADS  Article  Google Scholar 

  5. Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

    ADS  Google Scholar 

  6. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

    MATH  Google Scholar 

  7. Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Marin Soljačić. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008).

    ADS  Google Scholar 

  8. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić., M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  Article  Google Scholar 

  9. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907–912 (2011).

    ADS  Article  Google Scholar 

  10. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photon. 6, 782–787 (2012).

    ADS  Article  Google Scholar 

  11. Khanikaev, A. B. et al. Photonic topological insulators. Nature Mater. 12, 233–239 (2013).

    ADS  Google Scholar 

  12. Lu, L., Fu, L., Joannopoulos, J. D. & Soljačić, M. Weyl points and line nodes in gyroid photonic crystals. Nature Photon. 7, 294–299 (2013).

    ADS  Google Scholar 

  13. Skirlo, S. A., Lu, L. & Soljačić, M. Multimode one-way waveguides of large Chern numbers. Phys. Rev. Lett. 113, 113904 (2014).

    ADS  Google Scholar 

  14. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    ADS  Google Scholar 

  15. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  Google Scholar 

  16. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nature Photon. 7, 1001–1005 (2013).

    ADS  Google Scholar 

  17. Sepkhanov, R. A., Nilsson, J. & Beenakker, C. W. J. Proposed method for detection of the pseudospin-1/2 Berry phase in a photonic crystal with a Dirac spectrum. Phys. Rev. B 78, 045122 (2008).

    ADS  Google Scholar 

  18. Sepkhanov, R. A., Ossipov, A. & Beenakker, C. W. J. Extinction of coherent backscattering by a disordered photonic crystal with a Dirac spectrum. Europhys. Lett. 85, 14005 (2009).

    ADS  Google Scholar 

  19. Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

    ADS  Google Scholar 

  20. Bahat-Treidel, O. et al. Klein tunneling in deformed honeycomb lattices. Phys. Rev. Lett. 104, 063901 (2010).

    ADS  Google Scholar 

  21. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic landau levels in dielectric structures. Nature Photon. 7, 153–158 (2013).

    ADS  Google Scholar 

  22. Schomerus, H. & Halpern, N. Y. Parity anomaly and Landau-level lasing in strained photonic honeycomb lattices. Phys. Rev. Lett. 110, 013903 (2013).

    ADS  Google Scholar 

  23. Rechtsman, M. C. et al. Topological creation and destruction of edge states in photonic graphene. Phys. Rev. Lett. 111, 103901 (2013).

    ADS  Google Scholar 

  24. Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

    ADS  Google Scholar 

  25. Ochiai, T. & Onoda, M. Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Phys. Rev. B 80, 155103 (2009).

    ADS  Google Scholar 

  26. Fang, K., Yu, Z. & Fan, S. Microscopic theory of photonic one-way edge mode. Phys. Rev. B 84, 075477 (2011).

    ADS  Google Scholar 

  27. Poo, Y., Wu, R.-X., Lin, Z., Yang, Y. & Chan, C. T. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett. 106, 93903 (2011).

    ADS  Google Scholar 

  28. Liu, K., Shen, L. & He, S. One-way edge mode in a gyromagnetic photonic crystal slab. Opt. Lett. 37, 4110–4112 (2012).

    ADS  Google Scholar 

  29. Asatryan, A. A., Botten, L. C., Fang, K., Fan, S. & McPhedran, R. C. Local density of states of chiral Hall edge states in gyrotropic photonic clusters. Phys. Rev. B 88, 035127 (2013).

    ADS  Google Scholar 

  30. He, C. et al. Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystal. Appl. Phys. Lett. 96, 111111 (2010).

    ADS  Google Scholar 

  31. Zang, X. & Jiang, C. Edge mode in nonreciprocal photonic crystal waveguide: manipulating the unidirectional electromagnetic pulse dynamically. J. Opt. Soc. Am. B 28, 554–557 (2011).

    ADS  Google Scholar 

  32. Fu, J.-X., Liu, R.-J. & Li, Z.-Y. Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces. Appl. Phys. Lett. 97, 041112 (2010).

    ADS  Google Scholar 

  33. Fu, J.-X., Lian, J., Liu, R.-J., Gan, L. & Li, Z.-Y. Unidirectional channel-drop filter by one-way gyromagnetic photonic crystal waveguides. Appl. Phys. Lett. 98, 211104 (2011).

    ADS  Google Scholar 

  34. Qiu, W., Wang, Z. & Soljačić, M. Broadband circulators based on directional coupling of one-way waveguides. Opt. Express 19, 22248–22257 (2011).

    ADS  Google Scholar 

  35. Yang, Y., Poo, Y., Wu, R.-X., Gu, Y. & Chen, P. Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals. Appl. Phys. Lett. 102, 231113 (2013).

    ADS  Google Scholar 

  36. Chong, Y. D., Wen, X. G. & Soljačić, M. Effective theory of quadratic degeneracies. Phys. Rev. B 77, 235125 (2008).

    ADS  Google Scholar 

  37. Yu, Z., Veronis, G., Wang, Z. & Fan, S. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys. Rev. Lett. 100, 23902 (2008).

    ADS  Google Scholar 

  38. Mittal, S. et al. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett. 113, 087403 (2014).

    ADS  Google Scholar 

  39. Umucalılar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).

    ADS  Google Scholar 

  40. Petrescu, A., Houck, A. A. & Le Hur, K. Anomalous Hall effects of light and chiral edge modes on the Kagome lattice. Phys. Rev. A 86, 053804 (2012).

    ADS  Google Scholar 

  41. Hafezi, M. Measuring topological invariants in photonic systems. Phys. Rev. Lett. 112, 210405 (2014).

    ADS  Google Scholar 

  42. Liang, G. Q. & Chong, Y. D. Optical resonator analog of a two-dimensional topological insulator. Phys. Rev. Lett. 110, 203904 (2013).

    ADS  Google Scholar 

  43. Pasek, P. & Chong, Y. D. Network models of photonic Floquet topological insulators. Phys. Rev. B 89, 075113 (2013).

    ADS  Google Scholar 

  44. Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    ADS  Google Scholar 

  45. Li, E., Eggleton, B. J., Fang, K. & Fan, S. Photonic Aharonov–Bohm effect in photon–phonon interactions. Nature Commun. 5, 3225 (2014).

    ADS  Google Scholar 

  46. Tzuang, L. D., Fang, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nature Photon. 8, 701–705 (2014).

    ADS  Google Scholar 

  47. Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

    ADS  Google Scholar 

  48. Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nature Phys. 7, 490–495 (2011).

    ADS  Google Scholar 

  49. Kopp, V. I. et al. Chiral fiber gratings. Science 305, 74–75 (2004).

    ADS  Google Scholar 

  50. Jia, S. & Fleischer, J. W. Nonlinear light propagation in rotating waveguide arrays. Phys. Rev. A 79, 041804 (2009).

    ADS  Google Scholar 

  51. Dalibard, J., Gerbier, F., Juzeliūnas, G. & Öhberg, P. Colloquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523 (2011).

    ADS  Google Scholar 

  52. Jaksch, D. & Zoller, P. Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56 (2003).

    ADS  Google Scholar 

  53. Schmidt, M., Peano, V. & Marquardt, F. Optomechanical metamaterials: Dirac polaritons, gauge fields, and instabilities. Preprint at http://lanl.arxiv.org/abs/1311.7095 (2013).

  54. Jia, N., Sommer, A., Schuster, D. & Simon, J. Time reversal invariant topologically insulating circuits. Preprint at http://lanl.arxiv.org/abs/1309.0878 (2013).

  55. Kong, J. A. Theorems of bianisotropic media. Proc. IEEE 60, 1036–1046 (1972).

    MathSciNet  Google Scholar 

  56. Jonsson, F. & Flytzanis, C. Photospin-orbit coupling in photonic structures. Phys. Rev. Lett. 97, 193903 (2006).

    ADS  Google Scholar 

  57. Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Topologically protected photonic transport in bi-anisotropic meta-waveguides. Preprint at http://lanl.arxiv.org/abs/1401.1276 (2014).

  58. Chen, W.-J., Jiang, S.-J., Chen, X.-D., Dong, J.-W. & Chan, C. T. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Preprint at http://lanl.arxiv.org/abs/1401.0367 (2014).

  59. Gao, W. et al. Chiral hyperbolic metamaterial as a robust photonic topological insulator. Preprint at http://lanl.arxiv.org/abs/1401.5448 (2014).

  60. Kraus, Y. E., Ringel, Z. & Zilberberg, O. Four-dimensional quantum Hall effect in a two-dimensional quasicrystal. Phys. Rev. Lett. 111, 226401 (2013).

    ADS  Google Scholar 

  61. Chen, W.-J. et al. Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking. Phys. Rev. Lett. 107, 023901 (2011).

    ADS  Google Scholar 

  62. Lu, L., Joannopoulos, J. D. & Soljačić, M. Waveguiding at the edge of a three-dimensional photonic crystal. Phys. Rev. Lett. 108, 243901 (2012).

    ADS  Google Scholar 

  63. Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    ADS  Google Scholar 

  64. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    ADS  Google Scholar 

  65. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Google Scholar 

  66. Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34, 1633–1635 (2009).

    ADS  Google Scholar 

  67. Tan, W., Sun, Y., Chen, H. & Shen, S.-Q. Photonic simulation of topological excitations in metamaterials. Sci. Rep. 4, 3842 (2014).

    ADS  Google Scholar 

  68. Poshakinskiy, A. V., Poddubny, A. N., Pilozzi, L. & Ivchenko, E. L. Radiative topological states in resonant photonic crystals. Phys. Rev. Lett. 112, 107403 (2014).

    ADS  Google Scholar 

  69. Xiao, M., Zhang, Z. Q. & Chan, C. T. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X 4, 021017 (2014).

    Google Scholar 

  70. Poddubny, A., Miroshnichenko, A., Slobozhanyuk, A. & Kivshar, Y. Topological Majorana states in zigzag chains of plasmonic nanoparticles. ACS Photon. 1, 101–105 (2014).

    Google Scholar 

  71. Ling, C. W., Xiao, M., Yu, S. F. & Fung, K. H. Topological edge plasmon modes between diatomic chains of nanoparticles. Preprint at http://lanl.arxiv.org/abs/1401.7520 (2014).

  72. Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states. Preprint at http://lanl.arxiv.org/abs/1407.3703 (2014).

  73. Kitaev, A. Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22 (2009).

    ADS  MATH  Google Scholar 

  74. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

    ADS  Google Scholar 

  75. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    ADS  Google Scholar 

  76. Yannopapas, V. Gapless surface states in a lattice of coupled cavities: A photonic analog of topological crystalline insulators. Phys. Rev. B 84, 195126 (2011).

    ADS  Google Scholar 

  77. De Nittis, G. & Lein, M. On the role of symmetries in the theory of photonic crystals. Ann. Phys. 350, 568–587 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  78. Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry-protected topological orders in interacting bosonic systems. Science 338, 1604–1606 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  79. Umucalilar, R. O. & Carusotto, I. Fractional quantum Hall states of photons in an array of dissipative coupled cavities. Phys. Rev. Lett. 108, 206809 (2012).

    ADS  Google Scholar 

  80. Hafezi, M., Lukin, M. D. & Taylor, J. M. Non-equilibrium fractional quantum Hall state of light. New J. Phys. 15, 063001 (2013).

    ADS  Google Scholar 

  81. Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Self-localized states in photonic topological insulators. Phys. Rev. Lett. 111, 243905 (2013).

    ADS  Google Scholar 

  82. Yuen-Zhou, J., Saikin, S. K., Yao, N. Y. & Aspuru-Guzik, A. Topologically protected excitons in porphyrin thin films. Nature Mater. http://dx.doi.org/10.1038/nmat4073 (2014).

  83. Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    ADS  Google Scholar 

  84. Karzig, T., Bardyn, C.-E., Lindner, N. & Refael, G. Topological polaritons from quantum wells in photonic waveguides or microcavities. Preprint at http://lanl.arxiv.org/abs/1406.4156 (2014).

  85. Prodan, E. & Prodan, C. Topological phonon modes and their role in dynamic instability of microtubules. Phys. Rev. Lett. 103, 248101 (2009).

    ADS  Google Scholar 

  86. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nature Phys. 10, 39–45 (2013).

    ADS  Google Scholar 

  87. Shindou, R., Matsumoto, R. & Murakami, S. Topological chiral magnonic edge mode in a magnonic crystal. Phys. Rev. B 87, 174427 (2013).

    ADS  Google Scholar 

  88. Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljačić, M. Topological nature of bound states in the radiation continuum. Preprint at http://lanl.arxiv.org/abs/1408.0237 (2014).

  89. Koch, J., Houck, A. A., Le Hur, K. & Girvin, S. M. Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010).

    ADS  Google Scholar 

  90. Aspuru-Guzik, A., Demler, E. & White, A. G. Observation of topologically protected bound states in photonic quantum walks. Nature Commun. 3, 882 (2012).

    ADS  Google Scholar 

  91. Jalas, D. et al. What is and what is not an optical isolator. Nature Photon. 7, 579–582 (2013).

    ADS  Google Scholar 

  92. Nakahara, M. Geometry, topology, and physics (CRC, 2003).

    MATH  Google Scholar 

  93. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  94. Fukui, T., Hatsugai, Y. & Suzuki, H. Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances. J. Phys. Soc. Japan 74, 1674–1677 (2005).

    ADS  Google Scholar 

  95. Pancharatnam, S. Generalized theory of interference, and its applications. Proc. Indiana Acad. Sci. A44, 247–262 (1956).

    MathSciNet  Google Scholar 

  96. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond A 392, 45–57 (1984).

    ADS  MathSciNet  MATH  Google Scholar 

  97. Tomita, A. & Chiao, R. Y. Observation of Berry's topological phase by use of an optical fiber. Phys. Rev. Lett. 57, 937 (1986).

    ADS  Google Scholar 

  98. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    ADS  Google Scholar 

Download references

Acknowledgements

L.L. thanks L. Fu, C. Wang and A. Khanikaev for discussions. The authors thank P. Rebusco and C.W. Hsu for critical reading and editing of the manuscript. J.J. was supported in part by the U.S.A.R.O. through the ISN, under contract W911NF-07-D-0004. L.L. was supported in part by the MRSEC Program of the NSF under award DMR-0819762. M.S. and L.L. were supported in part by the MIT S3TEC EFRC of DOE under grant DE-SC0001299.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Ling Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Joannopoulos, J. & Soljačić, M. Topological photonics. Nature Photon 8, 821–829 (2014). https://doi.org/10.1038/nphoton.2014.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.248

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing