Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultimate classical communication rates of quantum optical channels

Abstract

Optical channels, such as fibres or free-space links, are ubiquitous in today's telecommunication networks. They rely on the electromagnetic field associated with photons to carry information from one point to another in space. A complete physical model of these channels must necessarily take quantum effects into account to determine their ultimate performances. Single-mode, phase-insensitive bosonic Gaussian channels have been extensively studied over past decades, given their importance for practical applications. In spite of this, a long-standing unsolved conjecture on the optimality of Gaussian encodings has prevented finding their classical communication capacity. Here, this conjecture is solved by proving that the vacuum state achieves the minimum output entropy of these channels. This establishes the ultimate achievable bit rate under an energy constraint, as well as the long awaited proof that the single-letter classical capacity of these channels is additive.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Compact representation of single-mode phase-insensitive channels.
Figure 2: Plots of the capacities and minimal output entropies for thermal , classical additive noise , amplifier and contravariant amplifier BGCs.
Figure 3: Graphical representation of equation (6).

References

  1. 1

    Gordon, J. P. Quantum effects in communications systems. Proc. IRE 1898–1908 (1962).

  2. 2

    Caves, C. M. & Drummond, P. B. Quantum limits on bosonic communication rates. Rev. Mod. Phys. 66, 481–537 (1994).

    ADS  Article  Google Scholar 

  3. 3

    Schumacher, B. & Westmoreland, W. D. Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131–138 (1997).

    ADS  Article  Google Scholar 

  4. 4

    Holevo, A. S. The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44, 269–273 (1998).

    MathSciNet  Article  Google Scholar 

  5. 5

    Bennett, C. H. & Shor, P. W. Quantum information theory. IEEE Trans. Inf. Theory 44, 2724–2742 (1998).

    MathSciNet  Article  Google Scholar 

  6. 6

    Holevo, A. S. & Werner, R. F. Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63, 032312 (2001).

    ADS  Article  Google Scholar 

  7. 7

    Giovannetti, V., Guha, S., Lloyd, S., Maccone, L. & Shapiro, J. H. Minimum output entropy of bosonic channels: a conjecture. Phys. Rev. A 70, 032315 (2004).

    ADS  Article  Google Scholar 

  8. 8

    Giovannetti, V., Guha, S., Lloyd, S., Maccone, L. & Shapiro, J. H. Minimum bosonic channel output entropies. AIP Conf. Proc. 734, 21–24 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Giovannetti, V., Holevo, A. S., Lloyd, S. & Maccone, L. Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results. J. Phys. A 43, 415305 (2010).

    MathSciNet  Article  Google Scholar 

  10. 10

    García-Patrón, R., Navarrete-Benlloch, C., Lloyd, S., Shapiro, J. H. & Cerf, N. J. Majorization theory approach to the Gaussian channel minimum entropy conjecture. Phys. Rev. Lett. 108, 110505 (2012).

    ADS  Article  Google Scholar 

  11. 11

    García-Patrón, R., Navarrete-Benlloch, C., Lloyd, S., Shapiro, J. H. & Cerf, N. J. The holy grail of quantum optical communication. in Proc. 11th International Conference on Quantum Communication, Measurement and Computing, 68 (2012).

  12. 12

    Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    ADS  Article  Google Scholar 

  13. 13

    König, R. & Smith, G. Classical capacity of quantum thermal noise channels to within 1.45 bits. Phys. Rev. Lett. 110, 040501 (2013).

    ADS  Article  Google Scholar 

  14. 14

    König, R. & Smith, G. Limits on classical communication from quantum entropy power inequalities. Nature Photon. 7, 142–146 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Giovannetti, V., Lloyd, S., Maccone, L. & Shapiro, J. H. Electromagnetic channel capacity for practical purposes. Nature Photon. 7, 834–838 (2013).

    ADS  Article  Google Scholar 

  16. 16

    Giovannetti, V. & Lloyd, S. Additivity properties of a Gaussian channel. Phys. Rev. A 69, 062307 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  17. 17

    Giovannetti, V., Lloyd, S., Maccone, L., Shapiro, J. H. & Yen, B. J. Minimum Rényi and Wehrl entropies at the output of bosonic channels. Phys. Rev. A 70, 022328 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Serafini, A., Eisert, J. & Wolf, M. M. Multiplicativity of maximal output purities of Gaussian channels under Gaussian inputs. Phys. Rev. A 71, 012320 (2005).

    ADS  Article  Google Scholar 

  19. 19

    Guha, S., Shapiro, J. H. & Erkmen, B. I. Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture. Phys. Rev. A 76, 032303 (2007).

    ADS  Article  Google Scholar 

  20. 20

    Giovannetti, V., Holevo, A. S. & García-Patrón, R. A solution of the Gaussian optimizer conjecture. Preprint at http://arxiv.org/abs/1312.2251 (2013).

  21. 21

    Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22

    Modi, K., Brodutch, A., Cable, H., Paterek, T. & Vedral, V. The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012).

    ADS  Article  Google Scholar 

  23. 23

    Pirandola, S., Spedalieri, G., Braunstein, S. L., Cerf, N. J. & Lloyd, S. Optimality of Gaussian discord. Preprint at http://arxiv.org/abs/1309.2215v2 (2014).

  24. 24

    Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley, 1968).

    MATH  Google Scholar 

  25. 25

    Holevo, A. S. Quantum Systems, Channels, Information. A Mathematical Introduction (De Gruyter, 2012).

    Book  Google Scholar 

  26. 26

    Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27

    Cerf, N. J., Leuchs, G. & Polzik, E. S. (eds) Quantum Information with Continuous Variables of Atoms and Light (Imperial College Press, 2007).

    Book  Google Scholar 

  28. 28

    Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, 1994).

    Book  Google Scholar 

  29. 29

    Schäfer, J., Karpov, E., García-Patrón, R., Pilyavets, O. V. & Cerf, N. J. Equivalence relations for the classical capacity of single-mode Gaussian quantum channels. Phys. Rev. Lett. 111, 030503 (2013).

    ADS  Article  Google Scholar 

  30. 30

    Caruso, F. & Giovannetti, V. Degradability of bosonic Gaussian channels. Phys. Rev. A 74, 062307 (2006).

    ADS  Article  Google Scholar 

  31. 31

    Holevo, A. S. One-mode quantum Gaussian channels: structure and quantum capacity. Probl. Inf. Transm. 43, 1–11 (2007).

    MathSciNet  Article  Google Scholar 

  32. 32

    Caruso, F., Giovannetti, V. & Holevo, A. S. One-mode bosonic Gaussian channels: a full weak-degradability classification. New J. Phys. 8, 310 (2006).

    ADS  Article  Google Scholar 

  33. 33

    Giovannetti, V. et al. Classical capacity of the lossy bosonic channel: the exact solution. Phys. Rev. Lett. 92, 027902 (2004).

    ADS  Article  Google Scholar 

  34. 34

    Holevo, A. S. Quantum coding theorems. Russ. Math. Surveys 53, 1295–1331 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  35. 35

    Holevo, A. S. & Shirokov, M. E. Continuous ensembles and the χ-capacity of infinite-dimensional channels. Theory Prob. Appl. 50, 86–98 (2006).

    MathSciNet  Article  Google Scholar 

  36. 36

    Wehrl, A. General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978).

    ADS  MathSciNet  Article  Google Scholar 

  37. 37

    Holevo, A. S. Complementary channels and the additivity problem. Theory Prob. Appl. 51, 92–100 (2007).

    MathSciNet  Article  Google Scholar 

  38. 38

    King, C., Matsumoto, K., Natanson, M. & Ruskai, M. B. Properties of conjugate channels with applications to additivity and multiplicativity. Markov Process. Relat. Fields 13, 391–423 (2007).

    MathSciNet  MATH  Google Scholar 

  39. 39

    Holevo, A. S. Entanglement-breaking channels in infinite dimensions. Probl. Inf. Transm. 44, 171–184 (2008).

    MathSciNet  Article  Google Scholar 

  40. 40

    Lupo, C., Pilyavets, O. V. & Mancini, S. Capacities of lossy bosonic channel with correlated noise. New J. Phys. 11, 063023 (2009).

    ADS  Article  Google Scholar 

  41. 41

    Giedke, G., Wolf, M. M., Krüger, O., Werner, R. F. & Cirac, J. I. Entanglement of formation for symmetric Gaussian states. Phys. Rev. Lett. 91, 107901 (2003).

    ADS  Article  Google Scholar 

  42. 42

    Wolf, M. M., Giedke, G., Krüger, O., Werner, R. F. & Cirac, J. I. Gaussian entanglement of formation. Phys. Rev. A 69, 052320 (2004).

    ADS  Article  Google Scholar 

  43. 43

    Matsumoto, K., Shimono, T. & Winter, A. Remarks on additivity of the Holevo channel capacity and of the entanglement of formation. Commun. Math. Phys. 246, 427–442 (2004).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Ambrosio, A. Mari, C. Navarrete-Benloch, J. Oppenheim, M.E. Shirokov, R.F. Werner and A. Winter for comments and discussions. The authors acknowledge support and the catalysing role of the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK; an important part of this work was conducted when attending the Newton Institute programme ‘Mathematical Challenges in Quantum Information’. A.H. acknowledges the Rothschild Distinguished Visiting Fellowship, which enabled him to participate in the programme, and partial support from RAS Fundamental Research Programs (the Russian Quantum Center). N.J.C. and R.G.-P. acknowledge financial support from the Belgian Fonds de la Recherche Scientifique (F.R.S.–FNRS) under projects T.0199.13 and HIPERCOM (High-Performance Coherent Quantum Communications), as well as from the ‘Interuniversity Attraction Poles’ programme of the Belgian Science Policy Office (grant no. IAP P7-35 Photonics@be). R.G.-P. acknowledges financial support from the Alexander von Humboldt Foundation, the F.R.S.–FNRS and Back-to-Belgium grant from the Belgian Federal Science Policy.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the research and writing of the manuscript.

Corresponding author

Correspondence to V. Giovannetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 334 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giovannetti, V., García-Patrón, R., Cerf, N. et al. Ultimate classical communication rates of quantum optical channels. Nature Photon 8, 796–800 (2014). https://doi.org/10.1038/nphoton.2014.216

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing