Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polymer bulk heterojunction solar cells employing Förster resonance energy transfer

Abstract

There are two crucial tasks for realizing high-efficiency polymer solar cells (PSCs): increasing the range of the spectral absorption of light and efficiently harvesting photogenerated excitons. Here, we describe Förster resonance energy transfer-based heterojunction polymer solar cells that incorporate squaraine dye. The high absorbance of squaraine in the near-infrared region broadens the spectral absorption of the solar cells and assists in developing an ordered nanomorphology for enhanced charge transport. Femtosecond spectroscopic studies reveal highly efficient (up to 96%) excitation energy transfer from poly(3-hexylthiophene) to squaraine occurring on a picosecond timescale. We demonstrate a 38% increase in power conversion efficiency to reach 4.5%, and suggest that this system has improved exciton migration over long distances. This architecture transcends traditional multiblend systems, allowing multiple donor materials with separate spectral responses to work synergistically, thereby enabling an improvement in light absorption and conversion. This opens up a new avenue for the development of high-efficiency polymer solar cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P3HT and SQ properties.
Figure 2: Photophysical study.
Figure 3: Photovoltaic performance.
Figure 4: Effects of 1 wt% SQ on morphology and crystallinity.

References

  1. Krebs, F. C., Gevorgyan, S. A. & Alstrup, J. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442–5451 (2009).

    Article  Google Scholar 

  2. Krebs, F. C. et al. A complete process for production of flexible large area polymer solar cells entirely using screen printing—first public demonstration. Solar Ener. Mater. Solar Cells 93, 422–441 (2009).

    Article  Google Scholar 

  3. Tipnis, R. et al. Large-area organic photovoltaic module—fabrication and performance. Solar Ener. Mater. Solar Cells 93, 442–446 (2009).

    Article  Google Scholar 

  4. Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nature Photon. 6, 153–161 (2012).

    Article  ADS  Google Scholar 

  5. Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater. 4, 864–868 (2005).

    Article  ADS  Google Scholar 

  6. Ma, W. L., Yang, C. Y., Gong, X., Lee, K. & Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005).

    Article  Google Scholar 

  7. Irwin, M. D., Buchholz, B., Hains, A. W., Chang, R. P. H. & Marks, T. J. P-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl Acad. Sci. USA 105, 2783–2787 (2008).

    Article  ADS  Google Scholar 

  8. Huang, J.-S., Chou, C.-Y. & Lin, C.-F. Efficient and air-stable polymer photovoltaic devices with WO3–V2O5 mixed oxides as anodic modification. IEEE Electron. Dev. Lett. 31, 332–334 (2010).

    Article  ADS  Google Scholar 

  9. Bundgaard, E. & Krebs, F. C. Low band gap polymers for organic photovoltaics. Solar Ener. Mater. Solar Cells 91, 954–985 (2007).

    Article  Google Scholar 

  10. Kroon, R., Lenes, M., Hummelen, J. C., Blom, P. W. M. & de Boer, B. Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym. Rev. 48, 531–582 (2008).

    Article  Google Scholar 

  11. Lee, J. K. et al. Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 130, 3619–3623 (2008).

    Article  Google Scholar 

  12. Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–302 (2009).

    Article  ADS  Google Scholar 

  13. Moon, J. S. et al. Effect of processing additive on the nanomorphology of a bulk heterojunction material. Nano Lett. 10, 4005–4008 (2010).

    Article  ADS  Google Scholar 

  14. Lou, S. J. et al. Effects of additives on the morphology of solution phase aggregates formed by active layer components of high-efficiency organic solar cells. J. Am. Chem. Soc. 133, 20661–20663 (2011).

    Article  Google Scholar 

  15. Peet, J., Senatore, M. L., Heeger, A. J. & Bazan, G. C. The role of processing in the fabrication and optimization of plastic solar cells Adv. Mater. 21, 1521–1527 (2009).

    Article  Google Scholar 

  16. Kirchartz, T., Taretto, K. & Rau, U. Efficiency limits of organic bulk heterojunction solar cells. J. Phys. Chem. C 113, 17958–17966 (2009).

    Article  Google Scholar 

  17. Hardin, B. E., Snaith, H. J. & McGehee, M. D. The renaissance of dye-sensitized solar cells. Nature Photon. 6, 162–169 (2012).

    Article  ADS  Google Scholar 

  18. Hardin, B. E. et al. Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nature Photon. 3, 406–411 (2009).

    Article  ADS  Google Scholar 

  19. Driscoll, K. et al. Enhanced photoresponse in solid-state excitonic solar cells via resonant energy transfer and cascaded charge transfer from a secondary absorber. Nano Lett. 10, 4981–4988 (2010).

    Article  ADS  Google Scholar 

  20. Hardin, B. E. et al. High excitation transfer efficiency from energy relay dyes in dye-sensitized solar cells. Nano Lett. 10, 3077–3083 (2010).

    Article  ADS  Google Scholar 

  21. Mor, G. K. et al. High-efficiency Förster resonance energy transfer in solid-state dye sensitized solar cells. Nano Lett. 10, 2387–2394 (2010).

    Article  ADS  Google Scholar 

  22. Mor, G. K. et al. Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Lett. 9, 4250–4257 (2009).

    Article  ADS  Google Scholar 

  23. Chen, Y.-C., Hsu, C.-Y., Lin, R., Ho, K.-C. & Lin, J. Materials for the active layer of organic photovoltaics: ternary solar cell approach. ChemSusChem 6, 20–35 (2013).

    Article  Google Scholar 

  24. Belcher, W. J., Wagner, K. I. & Dastoor, P. C. The effect of porphyrin inclusion on the spectral response of ternary P3HT:porphyrin:PCBM bulk heterojunction solar cells. Solar Ener. Mater. Solar Cells 91, 447–452 (2007).

    Article  Google Scholar 

  25. Cooling, N. et al. A study of the factors influencing the performance of ternary MEH-PPV:porphyrin:PCBM heterojunction devices: a steric approach to controlling charge recombination. Solar Ener. Mater. Solar Cells 95, 1767–1774 (2011).

    Article  Google Scholar 

  26. Koppe, M. et al. Near IR sensitization of organic bulk heterojunction solar cells: towards optimization of the spectral response of organic solar cells. Adv. Funct. Mater. 20, 338–346 (2010).

    Article  Google Scholar 

  27. Honda, S., Ohkita, H., Benten, H. & Ito, S. Selective dye loading at the heterojunction in polymer/fullerene solar cells. Adv. Ener. Mater. 1, 588–598 (2011).

    Article  Google Scholar 

  28. Ameri, T. et al. Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer. Adv. Ener. Mater. 2, 1198–1202 (2012).

    Article  Google Scholar 

  29. Yang, L., Zhou, H., Price, S. C. & You, W. Parallel-like bulk heterojunction polymer solar cells. J. Am. Chem. Soc. 134, 5432–5435 (2012).

    Article  Google Scholar 

  30. Lobez, J. M., Andrew, T. L., Bulović, V. & Swager, T. M. Improving the performance of P3HT–fullerene solar cells with side-chain-functionalized poly(thiophene) additives: a new paradigm for polymer design. ACS Nano 6, 3044–3056 (2012).

    Article  Google Scholar 

  31. Silvestri, F. et al. Efficient squaraine-based solution processable bulk-heterojunction solar cells. J. Am. Chem. Soc. 130, 17640–17641 (2008).

    Article  Google Scholar 

  32. Wei, G. et al. Functionalized squaraine donors for nanocrystalline organic photovoltaics. ACS Nano 6, 972–978 (2012).

    Article  Google Scholar 

  33. Kim, Y. et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Mater. 5, 197–203 (2006).

    Article  ADS  Google Scholar 

  34. Lakowicz, J. R. in Principles of Fluorescence Spectroscopy Ch.13 (Springer, 2006).

    Book  Google Scholar 

  35. Sapsford, K. E., Berti, L. & Medintz, I. L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew. Chem. Int. Ed. 45, 4562–4589 (2006).

    Article  Google Scholar 

  36. Sheng, C. X., Tong, M., Singh, S. & Vardeny, Z. V. Experimental determination of the charge/neutral branching ratio η in the photoexcitation of π-conjugated polymers by broadband ultrafast spectroscopy. Phys. Rev. B 75, 085206 (2007).

    Article  ADS  Google Scholar 

  37. Handlin, D. L. & Thomas, E. L. Visualization of ordered spherical microdomains of block copolymers by phase contrast electron microscopy. J. Mater. Sci. 3, 137–140 (1984).

    Google Scholar 

  38. van Bavel, S. S., Bärenklau, M., de With, G., Hoppe, H. & Loos, J. P3HT/PCBM bulk heterojunction solar cells: impact of blend composition and 3D morphology on device performance. Adv. Funct. Mater. 20, 1458–1463 (2010).

    Article  Google Scholar 

  39. Xie, Y. et al. Femtosecond time-resolved fluorescence study of P3HT/PCBM blend films. J. Phys. Chem C 114, 14590–14600 (2010).

    Article  Google Scholar 

  40. Huang, J.-H., Chien, F.-C., Chen, P., Ho, K.-C. & Chu, C.-W. Monitoring the 3D nanostructures of bulk heterojunction polymer solar cells using confocal lifetime imaging. Anal. Chem. 82, 1669–1673 (2010).

    Article  Google Scholar 

  41. Marsh, R. A., Hodgkiss, J. M., Albert-Seifried, S. & Friend, R. H. Effect of annealing on P3HT:PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy. Nano Lett. 10, 923–930 (2010).

    Article  ADS  Google Scholar 

  42. Tian, M. et al. Search for squaraine derivatives that can be sublimed without thermal decomposition. J. Phys. Chem. B 106, 4370–4376 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the SOLAR program of the National Science Foundation (NSF; DMR-0934520) and the Yale Climate and Energy Institute. A.D.T. acknowledges support from a NSF-CAREER award (CBET-0954985) and NASA (CT Space Grant Consortium). Research was carried out in part at the Centre for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-AC02-98CH10886). The authors thank C. Schmuttenmaer, E. Yan and S. Wang for informative discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.-S.H. and A.D.T. conceptualized the project. J.-S.H. designed and performed the device experiments and data analysis. J.-S.H., T.G. and M.Y.S. performed the ultrafast experiments and resulting data analysis. J.-S.H., T.G. and X.L. performed TEM experiments. J.-S.H., S.T. and M.L. performed the EQE experiments. E.A.B. and N.H. synthesized the SQ dye. A.D.T and J.-S.H. laid out the design of the manuscript. J.-S.H. wrote the original manuscript and all authors contributed equally towards improving it.

Corresponding author

Correspondence to André D. Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, JS., Goh, T., Li, X. et al. Polymer bulk heterojunction solar cells employing Förster resonance energy transfer. Nature Photon 7, 479–485 (2013). https://doi.org/10.1038/nphoton.2013.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing