Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charge-compensated, semiconducting single-walled carbon nanotube thin film as an electrically configurable optical medium

Abstract

A two-terminal semiconducting single-walled carbon nanotube (SC-SWNT) film in contact with an ionic liquid allows the realization of an extremely high density of holes, inducing a strong position-dependent electromodulation of the interband and excitonic transitions as a result of the position-dependent shift of the SWNT Fermi level. Electrical control of the optical transmission suggests applications of the SC-SWNT thin films as electrically configurable optical media, while the wide spectral range of the electro-optical modulation, which extends from the far-infrared to the visible, provides a viable approach to large-area electrochromic smart windows.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nonlinear electrical and electro-optical behaviour of a SC-SWNT film coated with ionic liquid.
Figure 2: Spatial distribution of the electro-optical effect in the SC-SWNT thin-film channel in ionic liquid.
Figure 3: Model of observed nonlinear electrical and electro-optical effects in SWNT thin films in ionic liquid.
Figure 4: Spectral range of electro-optical effects in SWNT thin films in ionic liquid.
Figure 5: Electro-optical configuration and functionalities based on the SWNT thin-film channel in an ionic liquid.

Similar content being viewed by others

References

  1. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer-Verlag, 2001).

    Book  Google Scholar 

  2. Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer-Verlag, 2008).

    MATH  Google Scholar 

  3. Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).

    Article  ADS  Google Scholar 

  4. Freitag, M., Martin, Y., Misewich, J. A., Martel, R. & Avouris, P. Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003).

    Article  ADS  Google Scholar 

  5. Levitsky, I. A. & Euler, W. B. Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination. Appl. Phys. Lett. 83, 1857–1859 (2003).

    Article  ADS  Google Scholar 

  6. Freitag, M. et al. Hot carrier electroluminescence from a single carbon nanotube. Nano Lett. 4, 1063–1066 (2004).

    Article  ADS  Google Scholar 

  7. Itkis, M. E., Borondics, F., Yu, A. & Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 312, 413–416 (2006).

    Article  ADS  Google Scholar 

  8. Tarasov, M., Svensson, J., Weis, J., Kuzmin, L. & Campbell, E. Carbon nanotube based bolometer. JETP Lett. 84, 267–270 (2006).

    Article  Google Scholar 

  9. Lee, J. U., Codella, P. J. & Pietrzykowski, M. Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p–n diodes. Appl. Phys. Lett. 90, 053103 (2007).

    Article  ADS  Google Scholar 

  10. Mann, D. et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nature Nanotech. 2, 33–38 (2007).

    Article  ADS  Google Scholar 

  11. Itkis, M. E., Yu, A. & Haddon, R. C. Single-walled carbon nanotube thin film emitter–detector integrated optoelectronic device. Nano Lett. 8, 2224–2228 (2008).

    Article  ADS  Google Scholar 

  12. St-Antoine, B. C., Menard, D. & Martel, R. Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett. 11, 609–613 (2011).

    Article  ADS  Google Scholar 

  13. Wu, Z. et al. Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004).

    Article  ADS  Google Scholar 

  14. Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 16, 3533–3539 (2006).

    Article  Google Scholar 

  15. Zhang, D. et al. Transparent, conductive, and flexible carbon nanotube films and their applications in organic light-emitting diodes. Nano Lett. 6, 1880–1886 (2006).

    Article  ADS  Google Scholar 

  16. Zhang, M. et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science 309, 1215–1219 (2005).

    Article  ADS  Google Scholar 

  17. Kaempgen, M., Duesberg, G. S. & Roth, S. Transparent carbon nanotube coating. Appl. Surf. Sci. 252, 425–429 (2005).

    Article  ADS  Google Scholar 

  18. Kavan, L. et al. Electrochemical tuning of electronic structure of single-walled carbon nanotubes: in-situ Raman and vis-NIR studies. J. Phys. Chem. B 105, 10764–10771 (2001).

    Article  Google Scholar 

  19. Zukalova, M., Tarabek, J., Kalbac, M., Kavan, L. & Dunsch, L. In situ optical spectroelectrochemistry of single-walled carbon nanotube thin films. J. Solid State Electrochem. 12, 1279–1284 (2008).

    Article  Google Scholar 

  20. Wang, F., Itkis, M. E. & Haddon, R. C. Enhanced electromodulation of infrared transmittance in semitransparent films of large diameter semiconducting single-walled carbon nanotubes. Nano Lett. 10, 937–942 (2010).

    Article  ADS  Google Scholar 

  21. Perebeinos, V. & Avouris, P. Exciton ionization, Frank–Keldysh, and Stark effects in carbon nanotubes. Nano Lett. 7, 609–613 (2007).

    Article  ADS  Google Scholar 

  22. Takenobu, T., Murayama, Y. & Iwasa, Y. Optical evidence of Stark effect in single-walled carbon nanotube transistors. Appl. Phys. Lett. 89, 263510 (2006).

    Article  ADS  Google Scholar 

  23. Takenobu, T., Murayama, Y., Shiraishi, M. & Iwasa, Y. Optical observation of carrier accumulation in single-walled carbon nanotube transistors. Jpn J. Appl. Phys. 45, L1190–L1192 (2006).

    Article  ADS  Google Scholar 

  24. Ham, M. H., Kong, B. S., Kim, W. J., Jung, H. T. & Strano, M. S. Unusually large Franz–Keldysh oscillations at ultraviolet wavelengths in single-walled carbon nanotubes. Phys. Rev. Lett. 102, 047402 (2009).

    Article  ADS  Google Scholar 

  25. Granqvist, C. G. Electrochromic materials: out of a niche. Nature Mater. 5, 89–90 (2006).

    Article  ADS  Google Scholar 

  26. Baetens, R., Jelle, B. P. & Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Solar Ener. Mater. Solar Cells 94, 87–105 (2010).

    Article  Google Scholar 

  27. Granqvist, C. G. Oxide electrochromics: an introduction to devices and materials. Solar Ener. Mater. Solar Cells 99, 1–13 (2012).

    Article  Google Scholar 

  28. Jaksic, N. I. & Salahifar, C. A feasibility study of electrochromic windows in vehicles. Solar Ener. Mater. Solar Cells 79, 409–423 (2003).

    Article  Google Scholar 

  29. Chen, J. et al. Solution properties of single-walled carbon nanotubes. Science 282, 95–98 (1998).

    Article  ADS  Google Scholar 

  30. Matsunaga, R., Matsuda, K. & Kanemitsu, Y. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy. Phys. Rev. Lett. 106, 037404 (2011).

    Article  ADS  Google Scholar 

  31. McEuen, P. L. & Park, J-Y. Electron transport in single-walled carbon nanotubes. MRS Bull. 29, 272–275 (2004).

    Article  Google Scholar 

  32. Yaish, Y. et al. Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. Phys. Rev. Lett. 92, 046401 (2004).

    Article  ADS  Google Scholar 

  33. Kang, D. et al. Adsorption-induced conversion of the carbon nanotube field effect transistor from ambipolar to unipolar behavior. Appl. Phys. Lett. 86, 093105 (2005).

    Article  ADS  Google Scholar 

  34. Nosho, Y., Ohno, Y., Kishimoto, S. & Mizutani, T. Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors. Nanotechnology 17, 3412–3415 (2006).

    Article  ADS  Google Scholar 

  35. Chai, Y. et al. Low-resistance electrical contacts to carbon nanotubes with graphite interfacial layer. IEEE Trans. Electron. Dev. 59, 12–19 (2012).

    Article  ADS  Google Scholar 

  36. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nature Mater. 9, 125–128 (2010).

    Article  ADS  Google Scholar 

  37. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mater. 7, 855–858 (2008).

    Article  ADS  Google Scholar 

  38. Ueno, K. et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nature Nanotech. 6, 408–412 (2011).

    Article  ADS  Google Scholar 

  39. Yuan, H. T. et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv. Funct. Mater. 19, 1046–1053 (2009).

    Article  Google Scholar 

  40. Yuan, H. T. et al. Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3 . Nano Lett. 11, 2601–2605 (2011).

    Article  ADS  Google Scholar 

  41. Ye, J. T. et al. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl Acad. Sci. USA 108, 13002–13006 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based on research sponsored by the Defense Microelectronics Activity (DMEA) (agreement no. H94003-10-2-1003). The US Government is authorized to reproduce and distribute reprints for Government purposes, notwithstanding any copyright notation thereon.

Author information

Authors and Affiliations

Authors

Contributions

F.W., M.E.I. and R.C.H. contributed to the original idea. M.E.I. and R.C.H. supervised the project. F.W. and M.E.I. designed and set up the experiment. F.W. performed the experiment. F.W., M.E.I., E.B. and R.C.H. contributed to the data analysis, interpretation of the results and preparation of the manuscript. M.E.I. and R.C.H. wrote the manuscript.

Corresponding author

Correspondence to Robert C. Haddon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Itkis, M., Bekyarova, E. et al. Charge-compensated, semiconducting single-walled carbon nanotube thin film as an electrically configurable optical medium. Nature Photon 7, 459–465 (2013). https://doi.org/10.1038/nphoton.2013.66

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.66

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing