Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A quantum logic gate between a solid-state quantum bit and a photon

Abstract

Integrated nanophotonic devices create strong light–matter interactions that are important for the development of solid-state quantum networks1, distributed quantum computers2 and ultralow-power optoelectronics3,4. A key component for many of these applications is the photonic quantum logic gate, where the quantum state of a solid-state quantum bit (qubit) conditionally controls the state of a photonic qubit. These gates are crucial for the development of robust quantum networks5,6,7, non-destructive quantum measurements8,9 and strong photon–photon interactions10. Here, we experimentally realize a quantum logic gate between an optical photon and a solid-state qubit. The qubit is composed of a quantum dot strongly coupled to a nanocavity, which acts as a coherently controllable qubit system that conditionally flips the polarization of a photon on picosecond timescales, implementing a controlled-NOT gate. Our results represent an important step towards solid-state quantum networks and provide a versatile approach for probing quantum dot–photon interactions on ultrafast timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Implementation of a quantum dot–photon cNOT operation.
Figure 2: Device characterizations under c.w. excitation.
Figure 3: Demonstration of controlled bit flip by pulsed pump–probe excitation.
Figure 4: cNOT operations for all four combinations of input–output polarizations.

Similar content being viewed by others

References

  1. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  2. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  3. Chang, D. E., Sorensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  4. Hwang, J. et al. A single-molecule optical transistor. Nature 460, 76–80 (2009).

    Article  ADS  Google Scholar 

  5. Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006).

    Article  ADS  Google Scholar 

  6. Waks, E. & Vuckovic, J. Dipole induced transparency in drop-filter cavity–waveguide systems. Phys. Rev. Lett. 96, 153601 (2006).

    Article  ADS  Google Scholar 

  7. Van Loock, P. et al. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006).

    Article  ADS  Google Scholar 

  8. Rauschenbeutel, A. et al. Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999).

    Article  ADS  Google Scholar 

  9. Volz, J., Gehr, R., Dubois, G., Esteve, J. & Reichel, J. Measurement of the internal state of a single atom without energy exchange. Nature 475, 210–213 (2011).

    Article  Google Scholar 

  10. Duan, L. M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    Article  ADS  Google Scholar 

  11. Stievater, T. H. et al. Rabi oscillations of excitons in single quantum dots. Phys. Rev. Lett. 87, 133603 (2001).

    Article  ADS  Google Scholar 

  12. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  13. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

    Article  ADS  Google Scholar 

  14. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Phys. 5, 758–763 (2009).

    Article  ADS  Google Scholar 

  15. Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    Article  ADS  Google Scholar 

  16. Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010).

    Article  ADS  Google Scholar 

  17. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    Article  ADS  Google Scholar 

  18. Kim, D., Carter, S. G., Greilich, A., Bracker, A. S. & Gammon, D. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Phys. 7, 223–229 (2011).

    Article  ADS  Google Scholar 

  19. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  20. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  21. Peter, E. et al. Exciton–photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    Article  ADS  Google Scholar 

  22. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  23. Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    Article  ADS  Google Scholar 

  24. Srinivasan, K. & Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature 450, 862–865 (2007).

    Article  ADS  Google Scholar 

  25. Reitzenstein, S. et al. Exciton spin state mediated photon–photon coupling in a strongly coupled quantum dot microcavity system. Phys. Rev. B 82, 121306 (2010).

    Article  ADS  Google Scholar 

  26. Förstner, J., Weber, C., Danckwerts, J. & Knorr, A. Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots. Phys. Rev. Lett. 91, 127401 (2003).

    Article  ADS  Google Scholar 

  27. Ramsay, A. J. A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots. Semicond. Sci. Technol. 25, 103001 (2010).

    Article  ADS  Google Scholar 

  28. Ohta, R. et al. Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot. Appl. Phys. Lett. 98, 173104 (2011).

    Article  ADS  Google Scholar 

  29. Bose, R., Sridharan, D., Solomon, G. S. & Waks, E. Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide. Opt. Express 19, 5398–5409 (2011).

    Article  ADS  Google Scholar 

  30. Faraon, A., Majumdar, A., Kim, H., Petroff, P. & Vučković, J. Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity. Phys. Rev. Lett. 104, 047402 (2010).

    Article  ADS  Google Scholar 

  31. Bose, R., Sridharan, D., Solomon, G. S. & Waks, E. Large optical Stark shifts in semiconductor quantum dots coupled to photonic crystal cavities. Appl. Phys. Lett. 98, 121109 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Army Research Office Multidisciplinary University Research Initiative on hybrid quantum interactions (grant no. W911NF09104), a Defense Advanced Research Projects Agency (DARPA) Defense Science Office grant (grant no. W31P4Q0910013), the Physics Frontier Center at the Joint Quantum Institute, and the Office of Naval Research Applied Electromagnetics Center. E.W. acknowledges support from the National Science Foundation Faculty Early Career Development (CAREER) award (grant no. ECCS 0846494) and a DARPA Young Faculty Award (grant no. N660011114121).

Author information

Authors and Affiliations

Authors

Contributions

H.K. and E.W. conceived and designed the experiment, and prepared the manuscript. H.K. carried out the measurements and analysed the data. R.B. and T.C.S. contributed to the measurements and sample design. E.W. and H.K. carried out the theoretical analysis. G.S.S. provided samples grown by molecular beam epitaxy.

Corresponding author

Correspondence to Edo Waks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2358 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Bose, R., Shen, T. et al. A quantum logic gate between a solid-state quantum bit and a photon. Nature Photon 7, 373–377 (2013). https://doi.org/10.1038/nphoton.2013.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.48

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing