Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Weyl points and line nodes in gyroid photonic crystals

Abstract

Weyl points and line nodes are three-dimensional linear point and line degeneracies between two bands. In contrast to two-dimensional Dirac points, which are their lower-dimensional analogues, Weyl points are stable in momentum space, and the associated surface states are predicted to be topologically non-trivial. However, Weyl points are yet to be discovered in nature. Here, we report photonic crystals based on double-gyroid structures, exhibiting frequency-isolated Weyl points with complete phase diagrams by breaking the parity and time-reversal symmetries. Gapless surface dispersions associated with non-zero Chern numbers are demonstrated. Line nodes are also found in similar geometries, the associated surface states forming flat dispersion bands. Our results are based on realistic ab initio calculations with true predictive power and should be readily realizable experimentally from microwave to optical frequencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Real-space unit cell and reciprocal-space Brillouin zone of the gyroid photonic crystals.
Figure 2: Gapless photonic band structures of the DG photonic crystals.
Figure 3: Flat surface dispersions of two pseudo-gapped photonic crystals.
Figure 4: Phase diagram of Weyl points when the magnetic field is applied along Γ-N.
Figure 5: Topological surface states of a Weyl-point photonic crystal.

Similar content being viewed by others

References

  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  2. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  3. Sepkhanov, R. A., Bazaliy, Y. B. & Beenakker, C. W. J. Extremal transmission at the Dirac point of a photonic band structure. Phys. Rev. A 75, 063813 (2007).

    Article  ADS  Google Scholar 

  4. Zhang, X. Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal. Phys. Rev. Lett. 100, 113903 (2008).

    Article  ADS  Google Scholar 

  5. Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

    Article  ADS  Google Scholar 

  6. Bravo-Abad, J., Joannopoulos, J. D. & Soljačić, M. Enabling single-mode behavior over large areas with photonic Dirac cones. Proc. Natl Acad. Sci. USA 109, 9761–9765 (2012).

    Article  ADS  Google Scholar 

  7. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nature Photon. 7, 153–158 (2013).

    Article  ADS  Google Scholar 

  8. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  9. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  Google Scholar 

  10. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  11. Khanikaev, A. B. et al. Photonic topological insulators. Nature Mater. 12, 233–239 (2013).

    ADS  Google Scholar 

  12. Rechtsman, M. C. et al. Photonic floquet topological insulators. Preprint at http://lanl.arXiv.org/abs/1212.3146 (2012).

  13. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  14. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  15. Halász, G. B. & Balents, L. Time-reversal invariant realization of the Weyl semimetal phase. Phys. Rev. B 85, 035103 (2012).

    Article  ADS  Google Scholar 

  16. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

    Article  ADS  Google Scholar 

  17. Volovik, G. in The Universe in a Helium Droplet Ch. 8 (Clarendon, 2003).

    MATH  Google Scholar 

  18. Yang, K-Y., Lu, Y-M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    Article  ADS  Google Scholar 

  19. Hosur, P., Parameswaran, S. A. & Vishwanath, A. Charge transport in Weyl semimetals. Phys. Rev. Lett. 108, 046602 (2012).

    Article  ADS  Google Scholar 

  20. Aji, V. Adler–Bell–Jackiw anomaly in Weyl semimetals: application to pyrochlore iridates. Phys. Rev. B 85, 241101 (2012).

    Article  ADS  Google Scholar 

  21. Schoen, A. Infinite Periodic Minimal Surfaces without Self-intersections, NASA Technical Note No. D-5541 (NASA, 1970).

    MATH  Google Scholar 

  22. Wohlgemuth, M., Yufa, N., Hoffman, J. & Thomas, E. L. Triply periodic bicontinuous cubic microdomain morphologies by symmetries. Macromolecules 34, 6083–6089 (2001).

    Article  ADS  Google Scholar 

  23. Hahn, T. International Tables for Crystallography (Volume A): Space-group Symmetry Part 7 (Kluwer Academic, 2002).

    MATH  Google Scholar 

  24. Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012).

    Article  ADS  Google Scholar 

  25. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M. & Wondratschek, H. Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr. A 62, 115–128 (2006).

    Article  ADS  Google Scholar 

  26. Maldovan, M., Urbas, A. M., Yufa, N., Carter, W. C. & Thomas, E. L. Photonic properties of bicontinuous cubic microphases. Phys. Rev. B 65, 165123 (2002).

    Article  ADS  Google Scholar 

  27. Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    Article  ADS  Google Scholar 

  28. Meade, R. D., Brommer, K. D., Rappe, A. M. & Joannopoulos, J. D. Electromagnetic Bloch waves at the surface of a photonic crystal. Phys. Rev. B 44, 10961–10964 (1991).

    Article  ADS  Google Scholar 

  29. Bouchaud, J. P. & Zérah, P. G. Spontaneous resonances and universal behavior in ferrimagnets: effective-medium theory. Phys. Rev. Lett. 63, 1000–1003 (1989).

    Article  ADS  Google Scholar 

  30. Bernevig, B., Hughes, T., Raghu, S. & Arovas, D. Theory of the three-dimensional quantum Hall effect in graphite. Phys. Rev. Lett. 99, 146804 (2007).

    Article  ADS  Google Scholar 

  31. Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

    Article  ADS  Google Scholar 

  32. Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljačić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008).

    Article  ADS  Google Scholar 

  33. Pouya, C. & Vukusic, P. Electromagnetic characterization of millimetre-scale replicas of the gyroid photonic crystal found in the butterfly parides sesostris. Interface Focus 2, 645–650 (2012).

    Article  Google Scholar 

  34. Özbay, E. et al. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys. Rev. B 50, 1945–1948 (1994).

    Article  ADS  Google Scholar 

  35. Saba, M. et al. Circular dichroism in biological photonic crystals and cubic chiral nets. Phys. Rev. Lett. 106, 103902 (2011).

    Article  ADS  Google Scholar 

  36. Hyde, S., Andersson, S., Ericsson, B. & Larsson, K. A cubic structure consisting of a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glycerolmonooleat-water system. Z. Kristallogr. 168, 213–219 (1984).

    Article  Google Scholar 

  37. Kresge, C., Leonowicz, M., Roth, W., Vartuli, J. & Beck, J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  ADS  Google Scholar 

  38. Saranathan, V. et al. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc. Natl Acad. Sci. USA 107, 11676–11681 (2010).

    Article  ADS  Google Scholar 

  39. Hur, K. et al. Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks. Angew. Chem. 123, 12191–12195 (2011).

    Article  Google Scholar 

  40. Armatas, G. S. & Kanatzidis, M. G. Mesostructured germanium with cubic pore symmetry. Nature 441, 1122–1125 (2006).

    Article  ADS  Google Scholar 

  41. García-Santamara, F. et al. A germanium inverse woodpile structure with a large photonic band gap. Adv. Mater. 19, 1567–1570 (2007).

    Article  Google Scholar 

  42. Ullal, C. K. et al. Triply periodic bicontinuous structures through interference lithography: a level-set approach. J. Opt. Soc. Am. A 20, 948–954 (2003).

    Article  ADS  Google Scholar 

  43. Turner, M., Schröder-Turk, G. & Gu, M. Fabrication and characterization of three-dimensional biomimetic chiral composites. Opt. Express 19, 10001–10008 (2011).

    Article  ADS  Google Scholar 

  44. Yablonovitch, E., Gmitter, T. J. & Leung, K. M. Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991).

    Article  ADS  Google Scholar 

  45. Takahashi, S. et al. Direct creation of three-dimensional photonic crystals by a top-down approach. Nature Mater. 8, 721–725 (2009).

    Article  ADS  Google Scholar 

  46. Lu, L. et al. Three-dimensional photonic crystals by large-area membrane stacking. Opt. Lett. 37, 4726–4728 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank F. Wang, M. Maldovan, Y. Ran, Z. Wang, S. G. Johnson, A. Vishwanath and D-H. Lee for helpful discussions. This work was supported in part by the US Army Research Office through the Institute for Soldier Nanotechnologies (contract no.W911NF-07-D-0004). L.L. was supported in part by the Materials Research Science and Engineering Center of the National Science Foundation (award no. DMR-0819762). M.S. and L.L. were supported in part by the Massachusetts Institute of Technology S3TEC Energy Frontier Research Center of the US Department of Energy (grant no. DE-SC0001299). L.F. was supported by start-up funds from MIT.

Author information

Authors and Affiliations

Authors

Contributions

L.L. proposed the gyroid photonic crystal system for realizing Weyl points and performed the simulations. L.F. developed a low-energy k.p model for the proposed system. All authors contributed to the design of the study, discussion of the results and writing of the manuscript.

Corresponding author

Correspondence to Ling Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 638 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, L., Fu, L., Joannopoulos, J. et al. Weyl points and line nodes in gyroid photonic crystals. Nature Photon 7, 294–299 (2013). https://doi.org/10.1038/nphoton.2013.42

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.42

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing