Abstract
Ultrafast charge transport in strongly biased semiconductors is at the heart of high-speed electronics, electro-optics and fundamental solid-state physics1,2,3,4,5,6,7,8,9,10,11,12,13. Intense light pulses in the terahertz spectral range have opened fascinating vistas14,15,16,17,18,19,20,21. Because terahertz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias5,11,17,19. Novel quantum phenomena have been anticipated for terahertz amplitudes, reaching atomic field strengths8,9,10. We exploit controlled (multi-)terahertz waveforms with peak fields of 72 MV cm−1 to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire terahertz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent terahertz-rate electronics.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
Observation of light-driven band structure via multiband high-harmonic spectroscopy
Nature Photonics Open Access 02 June 2022
-
Enhanced coherent transition radiation from midinfrared-laser-driven microplasmas
Scientific Reports Open Access 10 May 2022
-
Role of Majorana fermions in high-harmonic generation from Kitaev chain
Scientific Reports Open Access 25 April 2022
Access options
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.




References
Bloch, F. Űber die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1929).
Zener, C. Non-adiabatic crossing of energy levels. Proc. R. Soc. A 137, 696–702 (1932).
Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).
Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M. C. & Knox, W. H. Femtosecond charge transport in polar semiconductors. Phys. Rev. Lett. 82, 5140–5143 (1999).
Kuehn, W. et al. Coherent ballistic motion of electrons in a periodic potential. Phys. Rev. Lett. 104, 146602 (2010).
Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nature Phys. 7, 138–141 (2011).
Ghimire, S. et al. Generation and propagation of high-order harmonics in crystals. Phys. Rev. A 85, 043836 (2012).
Kemper, A. F., Moritz, B., Freericks, J. K. & Devereaux, T. P. Theoretical description of high-order harmonic generation in solids. New J. Phys. 15, 023003 (2013).
Golde, D., Meier, T. & Koch, S. W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 075330 (2008).
Golde, D., Kira, M., Meier, T. & Koch, S. W. Microscopic theory of the extremely nonlinear terahertz response of semiconductors. Phys. Status Solidi B 248, 863–866 (2011).
Hirori, H. et al. Extraordinary carrier multiplication gated by a picosecond electric field pulse. Nature Commun. 2, 594 (2011).
Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).
Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).
Hebling, J., Yeh, K.-L., Hoffmann, M. C., Bartal, B. & Nelson, K. A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B 25, B6–B19 (2008).
Sell, A., Leitenstorfer, A. & Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett. 33, 2767–2769 (2008).
Hirori, H., Doi, A., Blanchard, F. & Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3 . Appl. Phys. Lett. 98, 091106 (2011).
Cocker, T. L. et al. An ultrafast terahertz scanning/tunneling microscope. Nature Photon. 7, 620–625 (2013).
Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nature Photon. 5, 31–34 (2011).
Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photon. 7, 680–690 (2013).
Chin, A. H., Calderon, O. G. & Kono, J. Extreme midinfrared nonlinear optics in semiconductors. Phys. Rev. Lett. 86, 3292–3295 (2001).
Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental observation of electron–hole recollisions. Nature 483, 580–583 (2012).
Feldmann, J. et al. Optical investigation of Bloch oscillations in a semiconductor superlattice. Phys. Rev. B 46, 7252–7255 (1992).
Waschke, C. et al. Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice. Phys. Rev. Lett. 70, 3319–3322 (1993).
Unterrainer, K. et al. Inverse Bloch oscillator: strong terahertz-photocurrent resonances at the Bloch frequency. Phys. Rev. Lett. 76, 2973–2976 (1996).
Delahaye, J. et al. Low-noise current amplifier based on mesoscopic Josephson junction. Science 299, 1045–1048 (2003).
Christodoulides, D. N., Lederer, F. & Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817–823 (2003).
Bloch, I. Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature 453, 1016–1022 (2008).
Krauss, G. et al. All-passive phase locking of a compact Er:fiber laser system. Opt. Lett. 36, 540–542 (2011).
Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).
Schlüter, M. et al. Optical properties of GaSe and GaSxSe1−x mixed crystals. Phys. Rev. B 13, 3534–3547 (1976).
Acknowledgements
The authors thank K. Renk and T. Cocker for helpful discussions. This work was supported by the European Research Council (via starting grant QUANTUMsubCYCLE) and the Deutsche Forschungsgemeinschaft (grant no. KI 917/2-1).
Author information
Authors and Affiliations
Contributions
O.S., M.H., F.L. and R.H. conceived the study. O.S., M.H., F.L., B.U., C.L. and R.H. carried out the experiment. U.H., D.G., T.M., M.K. and S.W.K. developed the quantum-mechanical model and carried out the computations. O.S., M.H., F.L., U.H., M.K., S.W.K and R.H. wrote the manuscript. All authors discussed the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1756 kb)
Rights and permissions
About this article
Cite this article
Schubert, O., Hohenleutner, M., Langer, F. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photon 8, 119–123 (2014). https://doi.org/10.1038/nphoton.2013.349
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2013.349
Further reading
-
Role of Majorana fermions in high-harmonic generation from Kitaev chain
Scientific Reports (2022)
-
The speed limit of optoelectronics
Nature Communications (2022)
-
Enhanced coherent transition radiation from midinfrared-laser-driven microplasmas
Scientific Reports (2022)
-
Size-controlled quantum dots reveal the impact of intraband transitions on high-order harmonic generation in solids
Nature Physics (2022)
-
High harmonic generation in condensed matter
Nature Photonics (2022)