Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hollow-core photonic crystal fibres for gas-based nonlinear optics

Abstract

Unlike the capillaries conventionally used for gas-based spectral broadening of ultrashort (<100 fs) multi-millijoule pulses, which produce only normal dispersion at usable pressure levels, hollow-core photonic crystal fibres provide pressure-adjustable normal or anomalous dispersion. They also permit low-loss guidance in a hollow channel that is about ten times narrower and has a 100-fold-higher effective nonlinearity than capillary-based systems. This has led to several dramatic results, including soliton compression to few-cycle pulses, widely tunable deep-ultraviolet light sources, novel soliton–plasma interactions and multi-octave Raman frequency combs. A new generation of versatile and efficient gas-based light sources, which are tunable from the vacuum ultraviolet to the near infrared, and of versatile and efficient pulse compression devices is emerging.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Properties of kagome-style HC-PCF.
Figure 2: Three illustrative examples of nonlinear propagation in a gas-filled kagome PCF.
Figure 3: Pressure and energy dependencies of diverse phenomena in a gas-filled kagome PCF with a core diameter of 26 μm and length of 50 cm at a temperature of 293 K.
Figure 4: Tunability of ultraviolet light generation in a gas-filled kagome PCF.
Figure 5: Several different aspects of SRS in a HC-PCF.

Similar content being viewed by others

References

  1. Corkum, P. B., Rolland, C. & Srinivasan-Rao, T. Supercontinuum generation in gases. Phys. Rev. Lett. 57, 2268–2271 (1986).

    Article  ADS  Google Scholar 

  2. Popmintchev, T., Chen, M.-C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nature Photon. 4, 822–832 (2010).

    Article  ADS  Google Scholar 

  3. Bergé, L., Skupin, S., Nuter, R., Kasparian, J. & Wolf, J.-P. Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633–1713 (2007).

    Article  ADS  Google Scholar 

  4. Allen, L. & Eberly, J. H. Optical Resonance and Two-Level Atoms (Dover, 1975).

    Google Scholar 

  5. Reintjes, J. F. Nonlinear Optical Parametric Processes in Liquid and Gases (Academic, 1984).

    Google Scholar 

  6. Lee, P. H. Y., Casperson, D. E., Schappert, G. T. & Olson, G. L. X-ray generation from subpicosecond superintense laser atom–interaction. J. Opt. Soc. Am. B 7, 272–275 (1990).

    Article  ADS  Google Scholar 

  7. Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).

    Article  ADS  Google Scholar 

  8. Chin, S. L. et al. Advances in intense femtosecond laser filamentation in air. Las. Phys. 22, 1–53 (2012).

    Article  ADS  Google Scholar 

  9. Bergé, L. Self-compression of 2 μm laser filaments. Opt. Express 16, 21529–21543 (2008).

    Article  ADS  Google Scholar 

  10. Renn, M. J., Pastel, R. & Lewandowski, H. J. Laser guidance and trapping of mesoscale particles in hollow-core optical fibers. Phys. Rev. Lett. 82, 1574–1577 (1999).

    Article  ADS  Google Scholar 

  11. Marcatili, E. A. J. & Schmeltzer, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 43, 1783–1809 (1964).

    Article  Google Scholar 

  12. Russell, P. St. J. Photonic-crystal fibers. J. Lightwave Tech. 24, 4729–4749 (2006).

    Article  ADS  Google Scholar 

  13. Benabid, F. & Roberts, P. J. Linear and nonlinear optical properties of hollow core photonic crystal fiber. J. Mod. Opt. 58, 87–124 (2011).

    Article  ADS  MATH  Google Scholar 

  14. Roberts, P. J. et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 13, 236–244 (2005).

    Article  ADS  Google Scholar 

  15. Wang, Y. Y., Wheeler, N. V., Couny, F., Roberts, P. J. & Benabid, F. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett. 36, 669–671 (2011).

    Article  ADS  Google Scholar 

  16. Duguay, M. A., Kokubun, Y., Koch, T. L. & Pfeiffer, L. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett. 49, 13–15 (1986).

    Article  ADS  Google Scholar 

  17. Yu, F., Wadsworth, W. J. & Knight, J. C. Low loss silica hollow core fibers for 3-4 μm spectral region. Opt. Express 20, 11153–11158 (2012).

    Article  ADS  Google Scholar 

  18. Nisoli, M., De Silvestri, S. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996).

    Article  ADS  Google Scholar 

  19. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  20. Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nature Photon. 5, 655–663 (2011).

    Article  ADS  Google Scholar 

  21. Sansone, G., Calegari, F. & Nisoli, M. Attosecond technology and science. IEEE J. Sel. Top. Quant. Electron. 18, 507–519 (2012).

    Article  ADS  Google Scholar 

  22. Herrmann, D. et al. Approaching the full octave: noncollinear optical parametric chirped pulse amplification with two-color pumping. Opt. Express 18, 18752–18762 (2010).

    Article  ADS  Google Scholar 

  23. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  24. Skryabin, D. V. & Gorbach, A. V. Colloquium: looking at a soliton through the prism of optical supercontinuum. Rev. Mod. Phys. 82, 1287–1299 (2010).

    Article  ADS  Google Scholar 

  25. Travers, J. C., Chang, W., Nold, J., Joly, N. Y. & Russell, P. St. J. Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers. J. Opt. Soc. Am. B 28, A11–A26 (2011).

    Article  Google Scholar 

  26. Im, S.-J., Husakou, A. & Herrmann, J. Guiding properties and dispersion control of kagome lattice hollow-core photonic crystal fibers. Opt. Express 17, 13050–13058 (2009).

    Article  ADS  Google Scholar 

  27. Bouwmans, G. et al. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength. Opt. Express 11, 1613–1620 (2003).

    Article  ADS  Google Scholar 

  28. Joly, N. Y. et al. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. Phys. Rev. Lett. 106, 203901 (2011).

    Article  ADS  Google Scholar 

  29. Börzsönyi, A., Heiner, Z., Kalashnikov, M. P., Kovács, A. P. & Osvay, K. Dispersion measurement of inert gases and gas mixtures at 800 nm. Appl. Opt. 47, 4856–4863 (2008).

    Article  ADS  Google Scholar 

  30. Börzsönyi, Á., Heiner, Z., Kovács, A. P., Kalashnikov, M. P. & Osvay, K. Measurement of pressure dependent nonlinear refractive index of inert gases. Opt. Express 18, 25847–25854 (2010).

    Article  ADS  Google Scholar 

  31. Lehmberg, R. H., Pawley, C. J., Deniz, A. V., Klapisch, M. & Leng, Y. Two-photon resonantly-enhanced negative nonlinear refractive index in xenon at 248 nm. Opt. Commun. 121, 78–88 (1995).

    Article  ADS  Google Scholar 

  32. Ouzounov, D. G. et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003).

    Article  ADS  Google Scholar 

  33. Ouzounov, D. G. et al. Soliton pulse compression in photonic band-gap fibers. Opt. Express 13, 6153–6159 (2005).

    Article  ADS  Google Scholar 

  34. Im, S.-J., Husakou, A. & Herrmann, J. High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs. Opt. Express 18, 5367–5374 (2010).

    Article  ADS  Google Scholar 

  35. Agrawal, G. P. Nonlinear Fiber Optics. 4th edn Ch. 5 (Academic, 2007).

    MATH  Google Scholar 

  36. Kolesik, M. & Moloney, J. V. Nonlinear optical pulse propagation simulation: from Maxwell's to unidirectional equations. Phys. Rev. E 70, 036604 (2004).

    Article  ADS  Google Scholar 

  37. Chang, W. et al. Influence of ionization on ultrafast gas-based nonlinear fiber optics. Opt. Express 19, 21018–21027 (2011).

    Article  ADS  Google Scholar 

  38. Yudin, G. L. & Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001).

    Article  ADS  Google Scholar 

  39. Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986).

    Google Scholar 

  40. Zakharov, V. E. & Ostrovsky, L. A. Modulation instability: the beginning. Physica D 238, 540–548 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hasegawa, A. & Brinkman, W. Tunable coherent IR and FIR sources utilizing modulational instability. IEEE J. Quant. Electron. 16, 694–697 (1980).

    Article  ADS  Google Scholar 

  42. Reeves, W. H. et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature 424, 511–515 (2003).

    Article  ADS  Google Scholar 

  43. Kruhlak, R. J. et al. Polarization modulation instability in photonic crystal fibers. Opt. Lett. 31, 1379–1381 (2006).

    Article  ADS  Google Scholar 

  44. Tani, F., Travers, J. C. & Russell, P. St. J. PHz-wide supercontinua of nondispersing subcycle pulses generated by extreme modulational instability. Phys. Rev. Lett. 111, 033902 (2013).

    Article  ADS  Google Scholar 

  45. Saleh, M. F., Chang, W., Travers, J. C., Russell, P. St. J. & Biancalana, F. Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers. Phys. Rev. Lett. 109, 113902 (2012).

    Article  ADS  Google Scholar 

  46. Azhar, M., Wong, G. K. L., Chang, W., Joly, N. Y. & Russell, P. St. J. Raman-free nonlinear optical effects in high pressure gas-filled hollow core PCF. Opt. Express 21, 4405–4410 (2013).

    Article  ADS  Google Scholar 

  47. Lynch-Klarup, K. E. et al. Supercritical xenon-filled hollow-core photonic bandgap fiber. Opt. Express 21, 13726–13732 (2013).

    Article  ADS  Google Scholar 

  48. Azhar, M., Joly, N. Y., Travers, J. C. & Russell, P. St. J. Nonlinear optics in Xe-filled hollow-core PCF in high pressure and supercritical regimes. Appl. Phys. B 112, 457–460 (2013).

    Article  ADS  Google Scholar 

  49. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  50. Mollenauer, L. F., Stolen, R. H., Gordon, J. P. & Tomlinson, W. J. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt. Lett. 8, 289–291 (1983).

    Article  ADS  Google Scholar 

  51. Husakou, A. V. & Herrmann, J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001).

    Article  ADS  Google Scholar 

  52. Tai, K., Hasegawa, A. & Bekki, N. Fission of optical solitons induced by stimulated Raman effect. Opt. Lett. 13, 392–394 (1988).

    Article  ADS  Google Scholar 

  53. Wai, P. K. A., Chen, H. H. & Lee, Y. C. Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers. Phys. Rev. A 41, 426–439 (1990).

    Article  ADS  Google Scholar 

  54. Karpman, V. I. Radiation by solitons due to higher-order dispersion. Phys. Rev. E 47, 2073–2082 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  55. Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995).

    Article  ADS  Google Scholar 

  56. Erkintalo, M., Xu, Y. Q., Murdoch, S. G., Dudley, J. M. & Genty, G. Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs. Phys. Rev. Lett. 109, 223904 (2012).

    Article  ADS  Google Scholar 

  57. Mak, K. F., Travers, J. C., Hölzer, P., Joly, N. Y. & Russell, P. St. J. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF. Opt. Express 21, 10942–10953 (2013).

    Article  ADS  Google Scholar 

  58. Kalashnikov, V. L. et al. Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment. New J. Phys. 7, 217 (2005).

    Article  ADS  Google Scholar 

  59. Mak, K. F., Travers, J. C., Joly, N. Y., Abdolvand, A. & Russell, P. St. J. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber. Opt. Lett. 38, 3592–3595 (2013).

    Article  ADS  Google Scholar 

  60. Heckl, O. H. et al. Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power. Opt. Express 19, 19142–19149 (2011).

    Article  ADS  Google Scholar 

  61. Heckl, O. H. et al. High harmonic generation in a gas-filled hollow-core photonic crystal fiber. Appl. Phys. B 97, 369–373 (2009).

    Article  ADS  Google Scholar 

  62. Tzortzakis, S., Prade, B., Franco, M. & Mysyrowicz, A. Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Opt. Commun. 181, 123–127 (2000).

    Article  ADS  Google Scholar 

  63. Bodrov, S. et al. Plasma filament investigation by transverse optical interferometry and terahertz scattering. Opt. Express 19, 6829–6835 (2011).

    Article  ADS  Google Scholar 

  64. Hölzer, P. et al. Femtosecond nonlinear fiber optics in the ionization regime. Phys. Rev. Lett. 107, 203901 (2011).

    Article  ADS  Google Scholar 

  65. Saleh, M. F. et al. Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers. Phys. Rev. Lett. 107, 203902 (2011).

    Article  ADS  Google Scholar 

  66. Dianov, E. M. et al. Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers. JETP Lett. 41, 294–297 (1985).

    ADS  Google Scholar 

  67. Mitschke, F. M. & Mollenauer, L. F. Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661 (1986).

    Article  ADS  Google Scholar 

  68. Chang, W., Hölzer, P., Travers, J. C. & Russell, P. St. J. Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber. Opt. Lett. 38, 2984–2987 (2013).

    Article  ADS  Google Scholar 

  69. Benabid, F., Bouwmans, G., Knight, J. C., Russell, P. St. J. & Couny, F. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen. Phys. Rev. Lett. 93, 123903 (2004).

    Article  ADS  Google Scholar 

  70. Abdolvand, A., Nazarkin, A., Chugreev, A. V., Kaminski, C. F. & Russell, P. St. J. Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers. Phys. Rev. Lett. 103, 183902 (2009).

    Article  ADS  Google Scholar 

  71. Meng, L. S., Roos, P. A. & Carlsten, J. L. Continuous-wave rotational Raman laser in H2 . Opt. Lett. 27, 1226–1228 (2002).

    Article  ADS  Google Scholar 

  72. Couny, F., Benabid, F. & Light, P. S. Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber. Phys. Rev. Lett. 99, 143903 (2007).

    Article  ADS  Google Scholar 

  73. Bloembergen, N., Bret, G., Lalleman, P., Pino, A. & Simova, P. Controlled stimulated Raman amplification and oscillation in hydrogen gas. IEEE J. Quant. Electron. 3, 197–201 (1967).

    Article  ADS  Google Scholar 

  74. Sentrayan, K., Michael, A. & Kushawaha, V. Intense backward Raman lasers in CH4 and H2 . Appl. Opt. 32, 930–934 (1993).

    Article  ADS  Google Scholar 

  75. Menyuk, C. R., Levi, D. & Winternitz, P. Self-similarity in transient stimulated Raman scattering. Phys. Rev. Lett. 69, 3048–3051 (1992).

    Article  ADS  Google Scholar 

  76. Nazarkin, A., Abdolvand, A., Chugreev, A. V. & Russell, P. St. J. Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers. Phys. Rev. Lett. 105, 173902 (2010).

    Article  ADS  Google Scholar 

  77. Couny, F., Benabid, F., Roberts, P. J., Light, P. S. & Raymer, M. G. Generation and photonic guidance of multi-octave optical-frequency combs. Science 318, 1118–1121 (2007).

    Article  ADS  Google Scholar 

  78. Couny, F. & Benabid, F. Optical frequency comb generation in gas-filled hollow core photonic crystal fibres. J. Opt. A 11, 103002 (2009).

    Article  ADS  Google Scholar 

  79. Wang, Y. Y., Wu, C., Couny, F., Raymer, M. G. & Benabid, F. Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs. Phys. Rev. Lett. 105, 123603 (2010).

    Article  ADS  Google Scholar 

  80. Sensarn, S., Goda, S. N., Yin, G. Y. & Harris, S. E. Molecular modulation in a hollow fiber. Opt. Lett. 31, 2836–2838 (2006).

    Article  ADS  Google Scholar 

  81. Harris, S. E. & Sokolov, A. V. Subfemtosecond pulse generation by molecular modulation. Phys. Rev. Lett. 81, 2894–2897 (1998).

    Article  ADS  Google Scholar 

  82. Abdolvand, A., Walser, A. M., Ziemienczuk, M., Nguyen, T. & Russell, P. St. J. Generation of a phase-locked Raman frequency comb in gas-filled hollow-core photonic crystal fiber. Opt. Lett. 37, 4362–4364 (2012).

    Article  ADS  Google Scholar 

  83. Trabold, B. M., Abdolvand, A., Euser, T. G., Walser, A. M. & Russell, P. St. J. Amplification of higher-order modes by stimulated Raman scattering in H2-filled hollow-core photonic crystal fiber. Opt. Lett. 38, 600–602 (2013).

    Article  ADS  Google Scholar 

  84. Ghosh, S., Sharping, J. E., Ouzounov, D. G. & Gaeta, A. L. Resonant optical interactions with molecules confined in photonic band-gap fibers. Phys. Rev. Lett. 94, 093902 (2005).

    Article  ADS  Google Scholar 

  85. Wheeler, N. V., Light, P. S., Couny, F. & Benabid, F. Slow and superluminal light pulses via EIT in a 20-m acetylene-filled photonic microcell. J. Lightwave Technol. 28, 870–875 (2010).

    Article  ADS  Google Scholar 

  86. Marty, P. T., Morel, J. & Feurer, T. Pulsed erbium fiber laser with an acetylene-filled photonic crystal fiber for saturable absorption. Opt. Lett. 36, 3569–3571 (2011).

    Article  ADS  Google Scholar 

  87. Ghosh, S. et al. Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber. Phys. Rev. Lett. 97, 023603 (2006).

    Article  ADS  Google Scholar 

  88. Bajcsy, M. et al. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009).

    Article  ADS  Google Scholar 

  89. Venkataraman, V., Saha, K., Londero, P. & Gaeta, A. L. Few-photon all-optical modulation in a photonic band-gap fiber. Phys. Rev. Lett. 107, 193902 (2011).

    Article  ADS  Google Scholar 

  90. Sprague, M. R. et al. Efficient optical pumping and high optical depth in a hollow-core photonic-crystal fibre for a broadband quantum memory. New J. Phys. 15, 055013 (2013).

    Article  ADS  Google Scholar 

  91. Umstadter, D. P. Laser-wakefield accelerators: glass-guiding benefits. Nature Photon. 5, 576–577 (2011).

    Article  ADS  Google Scholar 

  92. Genoud, G. et al. Laser-plasma electron acceleration in dielectric capillary tubes. Appl. Phys. B 105, 309–316 (2011).

    Article  ADS  Google Scholar 

  93. NIST Chemistry WebBook, http://webbook.nist.gov.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. St. J. Russell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, P., Hölzer, P., Chang, W. et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nature Photon 8, 278–286 (2014). https://doi.org/10.1038/nphoton.2013.312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing