Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Nanotube and graphene saturable absorbers for fibre lasers

A Correction to this article was published on 30 October 2013

This article has been updated

Nanotubes and graphene have emerged as promising materials for use in ultrafast fibre lasers. Their unique electrical and optical properties enable them to be used as saturable absorbers that have fast responses and broadband operation and that can be easily integrated in fibre lasers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Various CNT-SA/graphene-SA integration methods for fibre devices.
Figure 2: Representative performance of ultrafast fibre lasers mode locked by CNT-SAs and graphene SAs.

Change history

  • 30 October 2013

    In the Commentary entitled "Nanotube and graphene saturable absorbers for fibre lasers" (Nature Photon. 7, 842–845; (2013)), "electrical gating24" on page 844 should have been "electrical gating25", "compressed externally19,34" on page 845 should have been "compressed externally13,34" and "23. Davide Di Dio Cafiso, S. Opt. Lett. 38, 1745–1747 (2013)" in the reference section should have been "23. Davide Di Dio Cafiso, S. et al. Opt. Lett. 38, 1745–1747 (2013)”. These errors have been corrected in both the HTML and PDF versions

References

  1. Poole, S. B., Payne, D. N. & Fermann M. E. Electron. Lett. 21, 737–738 (1985).

    Article  ADS  Google Scholar 

  2. Richardson, D. J., Nilsson, J. & Clarkson, W. A. J. Opt. Soc. Am. B 27, B63–B92 (2010).

    Article  Google Scholar 

  3. Fermann, M. E. & Hartl, I. Nature Photon. 7, 868–874 (2013).

    Article  ADS  Google Scholar 

  4. Xu, C. & Wise, F. W. Nature Photon. 7, 875–882 (2013).

    Article  ADS  Google Scholar 

  5. Dudley, J. M., Finot, C., Richardson, D. J. & Millot, G. Nature Phys. 3, 597–603 (2007).

    Article  ADS  Google Scholar 

  6. Lecaplain, C., Grelu, P., Soto-Crespo, J. M. & Akhmediev, N. Phys. Rev. Lett. 108, 233901 (2012).

    Article  ADS  Google Scholar 

  7. Turitsyna, E. G. et al. Nature Photon. 7, 783–786 (2013).

    Article  ADS  Google Scholar 

  8. Jackson, S. D. Nature Photon. 6, 423–431 (2012).

    Article  ADS  Google Scholar 

  9. Joly, N. Y. et al. Phys. Rev. Lett. 106, 203901 (2011).

    Article  ADS  Google Scholar 

  10. Haus, H. A. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).

    Article  ADS  Google Scholar 

  11. Keller, U. Nature 424, 831–838 (2003).

    Article  ADS  Google Scholar 

  12. Set, S. Y. et al. in Optical Fiber Communication Conference PD44 (2003).

    Google Scholar 

  13. Sun, Z., Hasan, T. & Ferrari, A. C. Physica E 44, 1082–1091 (2012).

    Article  ADS  Google Scholar 

  14. Wang, F. et al. Nature Nanotech. 3, 738–742 (2008).

    Article  ADS  Google Scholar 

  15. Kivistö, S. et al. Opt. Express 17, 2358–2363 (2009).

    Article  ADS  Google Scholar 

  16. Cho, W. B. et al. Adv. Funct. Mater. 20, 1937–1943 (2010).

    Article  Google Scholar 

  17. Saraceno, C. J. et al. IEEE J. Sel. Top. Quantum Electron. 18, 29–41 (2012).

    Article  ADS  Google Scholar 

  18. Hasan, T. et al. Adv. Mater. 21, 3874–3899 (2009).

    Article  Google Scholar 

  19. Bao, Q. et al. Adv. Funct. Mater. 19, 3077–3083 (2009).

    Article  Google Scholar 

  20. Sun, Z. et al. ACS Nano 4, 803–810 (2010).

    Article  Google Scholar 

  21. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Nature Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  22. Baek, I. H. et al. Appl. Phys. Express 5, 032701 (2012).

    Article  ADS  Google Scholar 

  23. Davide Di Dio Cafiso, S. et al. Opt. Lett. 38, 1745–1747 (2013).

    Article  ADS  Google Scholar 

  24. Zhu, G., Zhu, X., Balakrishnan, K., Norwood, R. A. & Peyghambarian, N. Opt. Mater. Express 3, 1365–1377 (2013).

    Article  ADS  Google Scholar 

  25. Lee, C.-C. et al. Opt. Lett. 37, 3084–3086 (2012).

    Article  ADS  Google Scholar 

  26. Wise, F. W., Chong, A. & Renninger, W. H. Las. Photon. Rev. 2, 58–73 (2008).

    Article  ADS  Google Scholar 

  27. Aguergaray, C., Broderick, N. G. R., Erkintalo, M., Chen, J. S. Y. & Kruglov, V. Opt. Express 20, 10545–10551 (2012).

    Article  ADS  Google Scholar 

  28. Kieu, K. & Wise, F. W. Opt. Express 16, 11453–11458 (2008).

    Article  ADS  Google Scholar 

  29. Song, Y. W., Morimune, K., Set, S. Y. & Yamashita, S. Appl. Phys. Lett. 90, 021101 (2007).

    Article  ADS  Google Scholar 

  30. Fang, Q., Kieu, K. & Peyghambarian, N. IEEE Photon. Technol. Lett. 22, 1656–1658 (2010).

    Google Scholar 

  31. Zhang, M. et al. Opt. Express 20, 25077–25084 (2012).

    Article  ADS  Google Scholar 

  32. Castellani, C. E. S. et al. Opt. Lett. 36, 3996–3998 (2011).

    Article  ADS  Google Scholar 

  33. Popa, D. et al. Appl. Phys. Lett. 101, 153107 (2012).

    Article  ADS  Google Scholar 

  34. Kieu, K., Jones, R. J. & Peyghambarian, N. IEEE Photon. Technol. Lett. 22, 1521–1523 (2010).

    Article  ADS  Google Scholar 

  35. Martinez, A. & Yamashita, S. Opt. Express 19, 6155–6163 (2011).

    Article  ADS  Google Scholar 

  36. Yamashita, S., Martinez, A. & Xu. B. Proc. SPIE 8808, Active Photonic Materials V, 88808Q (2013).

Download references

Acknowledgements

The authors thank Shinji Yamashita, Andrea Ferrari and their group members for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amos Martinez or Zhipei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, A., Sun, Z. Nanotube and graphene saturable absorbers for fibre lasers. Nature Photon 7, 842–845 (2013). https://doi.org/10.1038/nphoton.2013.304

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing