Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams

Abstract

Highly confined vectorial electromagnetic field distributions are an excellent tool for detailed studies in nano-optics, such as nonlinear microscopy1, advanced fluorescence imaging2,3 or nanoplasmonics4,5. Such field distributions can be generated, for instance, by tight focusing of polarized light beams6,7,8,9. To guarantee high resolution in the investigation of objects with subwavelength dimensions, precise knowledge of the spatial distribution of the exciting vectorial field is of utmost importance. The full-field reconstruction methods presented to date involve, for example, complex near-field techniques10,11,12,13. Here, we demonstrate a simple and straightforward-to-implement measurement scheme and reconstruction algorithm based on the scattering signal of a single spherical nanoparticle as a field probe. We are able to reconstruct the amplitudes and relative phases of the individual focal field components with subwavelength resolution from a single scan measurement without the need for polarization analysis of the scattered light. This scheme has the potential to improve microscopy and nanoscopy techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the scattering process.
Figure 2: Sketch of the experimental implementation of the reconstruction scheme.
Figure 3: Experimental results and theoretical comparison for a radially polarized vector beam.

Similar content being viewed by others

References

  1. Masihzadeh, O., Schlup, P. & Bartels, R. A. Enhanced spatial resolution in third-harmonic microscopy through polarization switching. Opt. Lett. 34, 1240–1242 (2009).

    Article  ADS  Google Scholar 

  2. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  3. Mudry, E. et al. Structured illumination microscopy using unknown speckle patterns. Nature Photon. 6, 312–315 (2012).

    Article  ADS  Google Scholar 

  4. Failla, A. V., Qian, H., Qian, H., Hartschuh, A. & Meixner, A. J. Orientational imaging of subwavelength Au particles with higher order laser modes. Nano Lett. 6, 1374–1378 (2006).

    Article  ADS  Google Scholar 

  5. Banzer, P., Peschel, U., Quabis, S. & Leuchs, G. On the experimental investigation of the electric and magnetic response of a single nano-structure. Opt. Express 18, 10905–10923 (2010).

    Article  ADS  Google Scholar 

  6. Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. A 253, 358–379 (1959).

    Article  ADS  Google Scholar 

  7. Quabis, S., Dorn, R., Eberler, M., Glöckl, O. & Leuchs, G. Focusing light to a tighter spot. Opt. Commun. 179, 1–7 (2000).

    Article  ADS  Google Scholar 

  8. Youngworth, K. S. & Brown, T. G. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000).

    Article  ADS  Google Scholar 

  9. Dorn, R., Quabis, S. & Leuchs, G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003).

    Article  ADS  Google Scholar 

  10. Lee, K. G. et al. Vector field microscopic imaging of light. Nature Photon. 1, 53–56 (2007).

    Article  ADS  Google Scholar 

  11. Grosjean, T. et al. Full vectorial imaging of electromagnetic light at subwavelength scale. Opt. Express 18, 5809–5824 (2010).

    Article  ADS  Google Scholar 

  12. Burresi, M. et al. Observation of polarization singularities at the nanoscale. Phys. Rev. Lett. 102, 033902 (2009).

    Article  ADS  Google Scholar 

  13. Schnell, M., Garcia-Etxarri, A., Alkorta, J., Aizpurua, J. & Hillenbrand, R. Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. Nano Lett. 10, 3524–3528 (2010).

    Article  ADS  Google Scholar 

  14. Stephens, D. J. & Allan, V. J. Light microscopy techniques for live cell imaging. Science 300, 82–86 (2003).

    Article  ADS  Google Scholar 

  15. Rodríguez-Herrera, O., Lara, D., Bliokh, K., Ostrovskaya, E. & Dainty, C. Optical nanoprobing via spin–orbit interaction of light. Phys. Rev. Lett. 104, 253601 (2010).

    Article  ADS  Google Scholar 

  16. Quabis, S., Dorn, R., Eberler, M., Glöckl, O. & Leuchs, G. The focus of light—theoretical calculation and experimental tomographic reconstruction. Appl. Phys. B 72, 109–113 (2001).

    Article  ADS  Google Scholar 

  17. Marchenko, P. et al. Interaction of highly focused vector beams with a metal knife-edge. Opt. Express 19, 7244–7261 (2011).

    Article  ADS  Google Scholar 

  18. Novotny, L., Beversluis, M. R., Youngworth, K. S. & Brown, T. G. Longitudinal field modes probed by single molecules. Phys. Rev. Lett. 86, 5251–5254 (2001).

    Article  ADS  Google Scholar 

  19. Rhodes, S. K., Nugent, K. A. & Roberts, A. Precision measurement of the electromagnetic fields in the focal region of a high-numerical-aperture lens using a tapered fiber probe. J. Opt. Soc. Am. A 19, 1689–1693 (2002).

    Article  ADS  Google Scholar 

  20. Bouhelier, A., Beversluis, M. R. & Novotny, L. Near-field scattering of longitudinal fields. Appl. Phys. Lett. 82, 4596–4598 (2003).

    Article  ADS  Google Scholar 

  21. Garbin, V. et al. Mie scattering distinguishes the topological charge of an optical vortex: a homage to Gustav Mie. New J. Phys. 11, 013046 (2009).

    Article  ADS  Google Scholar 

  22. Jasny, J. & Sepiol, J. Single molecules observed by immersion mirror objective. A novel method of finding the orientation of a radiating dipole. Chem. Phys. Lett. 273, 439–443 (1997).

    Article  ADS  Google Scholar 

  23. Hoang, T. X., Chen, X. & Sheppard, C. J. R. Multipole theory for tight focusing of polarized light, including radially polarized and other special cases. J. Opt. Soc. Am. A 29, 32–43 (2012).

    Article  ADS  Google Scholar 

  24. Mojarad, N. M., Sandoghdar, V. & Agio, M. Plasmon spectra of nanospheres under a tightly focused beam. J. Opt. Soc. Am. B 25, 651–658 (2008).

    Article  ADS  Google Scholar 

  25. Mishchenko, M. I., Travis, L. D. & Lacis, A. A. Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).

    Google Scholar 

  26. Orlov, S., Peschel, U., Bauer, T. & Banzer, P. Analytical expansion of highly focused vector beams into vector spherical harmonics and its application to Mie scattering. Phys. Rev. A 85, 063825 (2012).

    Article  ADS  Google Scholar 

  27. Cruzan, O. R. Translational addition theorems for spherical vector wave functions. Q. Appl. Math. 20, 33–40 (1962).

    Article  MathSciNet  Google Scholar 

  28. Stratton, J. A. Electromagnetic Theory (McGraw-Hill, 1940).

    MATH  Google Scholar 

  29. Volpe, G., Cherukulappurath, S., Juanola Parramon, R., Molina-Terriza, G. & Quidant, R. Controlling the optical near field of nanoantennas with spatial phase-shaped beams. Nano Lett. 9, 3608–3611 (2009).

    Article  ADS  Google Scholar 

  30. Banzer, P., Kindler, J., Quabis, S., Peschel, U. & Leuchs, G. Extraordinary transmission through a single coaxial aperture in a thin metal film. Opt. Express 18, 10896–10904 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Neugebauer and S. Batz for discussions and M. Schmelzeisen from the Max Planck Institute for Polymer Research in Mainz for the fabrication of the scattering particle.

Author information

Authors and Affiliations

Authors

Contributions

G.L., P.B., S.O. and U.P. conceived the idea. P.B. and T.B. designed the experiment. S.O. and P.B. developed the theoretical algorithm and procedure. T.B. performed the experiment. S.O. and T.B. analysed the data. G.L. and P.B. supervised all aspects of the project. All authors contributed to the text of the manuscript.

Corresponding author

Correspondence to Peter Banzer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 727 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, T., Orlov, S., Peschel, U. et al. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nature Photon 8, 23–27 (2014). https://doi.org/10.1038/nphoton.2013.289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing