Ultrafast fibre lasers

An Erratum to this article was published on 28 October 2013

A Corrigendum to this article was published on 28 October 2013

This article has been updated


Ultrafast fibre lasers are fundamental building blocks of many photonic systems used in industrial and medical applications as well as for scientific research. Here, we review the essential components and operation regimes of ultrafast fibre lasers and discuss how they are instrumental in a variety of applications. In regards to laser technology, we discuss the present state of the art of large-mode-area fibres and their utilization in high-power, chirped-pulse amplification systems. In terms of commercial applications, we introduce industrial micromachining and medical imaging, and describe emerging applications in the mid-infrared and extreme-ultraviolet spectral regions, as facilitated by frequency shifting induced by fibre frequency combs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: All-polarization-maintaining, self-starting Yb fibre laser.
Figure 2: Development of output power over the years.
Figure 3: Present mid-infrared spectral power densities from a variety of coherent fibre sources.
Figure 4: Experimental set-up for intracavity high-harmonic generation using a high-power Yb fibre comb as the pump laser.

Change history

  • 28 October 2013

    In the version of this Review Article originally published online and in print, the label for the horizontal axis in Fig. 3 should read "Wavelength (μm)" and not "Wavelength (nm)". This has now been corrected in both the HTML and PDF versions of the Review Article.

  • 28 October 2013

    In the version of this Review Article originally published online and in print, the DOI was incorrectly specified as 10.1038/nphoton.2013.270. The correct DOI is 10.1038/nphoton.2013.280. This has now been corrected in both the HTML and PDF versions of the Review Article.


  1. 1

    Hopkins, H. H. & Kapany, N. S. A flexible fibrescope, using static scanning. Nature 173, 39–41 (1954).

    Article  ADS  Google Scholar 

  2. 2

    Kao, C. K. Nobel Lecture: sand from centuries past: send future voices fast. Rev. Mod. Phys. 82, 2299–2303 (2010).

    Article  ADS  Google Scholar 

  3. 3

    Snitzer, E. Optical maser action of Nd+3 in a barium crown glass. Phys. Rev. Lett. 7, 444–446 (1961).

    Article  ADS  Google Scholar 

  4. 4

    Mears, R., Reekie, L., Jauncey, I. M. & Payne, D. N. Low-noise erbium-doped fibre amplifier operating at 1.54μm. Electron. Lett. 23, 1026–1028 (1987).

    Article  Google Scholar 

  5. 5

    Desurvire, E., Simpson, J. R. & Becker, P. C. High-gain erbium-doped traveling-wave fiber amplifier. Opt. Lett. 12, 888–890 (1987).

    Article  ADS  Google Scholar 

  6. 6

    Fermann, M., Hofer, M., Haberl, F. & Craig-Ryan, S. P. Femtosecond fibre laser. Electron. Lett. 26, 1737–1738 (1990).

    Article  Google Scholar 

  7. 7

    Duling, I. N. III All-fiber ring soliton laser mode locked with a nonlinear mirror. Opt. Lett. 16, 539–541 (1991).

    Article  ADS  Google Scholar 

  8. 8

    Tamura, K., Ippen, E. P., Haus, H. A. & Nelson, L. E. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 18, 1080–1082 (1993).

    Article  ADS  Google Scholar 

  9. 9

    Hartl, I., Imeshev, G., Dong, L., Cho, G. C. & Fermann, M. E. Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers. Paper CThG1 in Conf. on Lasers Electro-Optics (OSA, 2005).

  10. 10

    Baumann, E. et al. High-performance, vibration-immune, fiber-laser frequency comb. Opt. Lett. 34, 638–640 (2009).

    Article  ADS  Google Scholar 

  11. 11

    Aguergaray, C., Broderick, N. G. R., Erkintalo, M., Chen, J. S. Y. & Kruglov, V. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror. Opt. Express 20, 10545–10551 (2012).

    Article  ADS  Google Scholar 

  12. 12

    Fermann, M. E., Haberl, F., Hofer, M. & Hochreiter, H. Nonlinear amplifying loop mirror. Opt. Lett. 15, 752–754 (1990).

    Article  ADS  Google Scholar 

  13. 13

    König, J., Nolte, S. & Tünnermann, A. Plasma evolution during metal ablation with ultrashort laser pulses. Opt. Express 13, 10597–10607 (2005).

    Article  ADS  Google Scholar 

  14. 14

    Stock, M. L., Galvanauskas, A., Fermann, M. E., Mourou, G. & Harter, D. Generation of high-power femtosecond optical pulses by chirped pulse amplification in erbium doped fibers. in Proc. Opt. Soc. Am. Top. Meeting on Nonlinear Guided Wave Phenomena (OSA, 1993).

  15. 15

    Galvanauskas, A., Blixt, P. & Tellefsen, J. A. Generation of femtosecond optical pulses with nanojoule energy from a diode laser and fiber based system. Appl. Phys. Lett. 63, 1742 (1993).

    Article  ADS  Google Scholar 

  16. 16

    Ilbey, E. et al. Nonlinear chirped-pulse amplification of a soliton-similariton laser to 1 μJ at 1550 nm. Paper CTu2M in CLEO: Science and Innovations (OSA, 2012).

  17. 17

    Juhasz, T., Kastis, G. A., Suárez, C., Bor, Z. & Bron, W. E. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water. Las. Surg. Med. 19, 23–31 (1996).

    Article  Google Scholar 

  18. 18

    Chichkov, B., Momma, C., Nolte, S., von Alvensleben, F. & Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996).

    Article  ADS  Google Scholar 

  19. 19

    Le Drogoff, B. et al. Laser-ablated volume and depth as a function of pulse duration in aluminum targets. Appl. Opt. 44, 278–281 (2005).

    Article  ADS  Google Scholar 

  20. 20

    Hu, W., Shin, Y. C. & King, G. Modeling of multi-burst mode pico-second laser ablation for improved material removal rate. Appl. Phys. A 98, 407–415 (2010).

    Article  ADS  Google Scholar 

  21. 21

    Limpert, J. et al. High-power picosecond fiber amplifier based on nonlinear spectral compression. Opt. Lett. 30, 714–716 (2005).

    Article  ADS  Google Scholar 

  22. 22

    Fermann, M. E. Single-mode excitation of multimode fibers with ultrashort pulses. Opt. Lett. 23, 52–54 (1998).

    Article  ADS  Google Scholar 

  23. 23

    Koplow, J. P., Kliner, D. A. V. & Goldberg, L. Single-mode operation of a coiled multimode fiber amplifier, Opt. Lett. 25, 442–444 (2000).

    Article  ADS  Google Scholar 

  24. 24

    Ma, X., Liu, C.-H., Chang, G. & Galvanauskas, A. Angular-momentum coupled optical waves in chirally-coupled-core fibers. Opt. Express 19, 26515–26528 (2011).

    Article  ADS  Google Scholar 

  25. 25

    Wong, W. S., Peng, X., McLaughlin, J. M. & Dong, L. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers. Opt. Lett. 30, 2855–2857 (2005).

    Article  ADS  Google Scholar 

  26. 26

    Stutzki, F. et al. High average power large-pitch fiber amplifier with robust single-mode operation. Opt. Lett. 36, 689–691 (2011).

    Article  ADS  Google Scholar 

  27. 27

    Birks, T. A., Knight, J. C. & Russell, P. St. J. Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997).

    Article  ADS  Google Scholar 

  28. 28

    Jansen, F. et al. The influence of index-depressions in core-pumped Yb-doped large pitch fibers. Opt. Express 18, 26834–26842 (2010).

    Article  ADS  Google Scholar 

  29. 29

    Alkeskjold, T. T., Laurila, M., Scolari, L. & Broeng, J. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier. Opt. Express 19, 7398–7409 (2011).

    Article  ADS  Google Scholar 

  30. 30

    Gu, G. et al. Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers. Opt. Express 21, 24039–24048 (2013).

    Article  ADS  Google Scholar 

  31. 31

    Dong, L. et al. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding. Opt. Express 17, 8962–8969 (2009).

    Article  ADS  Google Scholar 

  32. 32

    Fu, L., McKay, H. A. & Dong, L. Extremely large mode area optical fibers formed by thermal stress. Opt. Express 17, 11782–11793 (2009).

    Article  ADS  Google Scholar 

  33. 33

    Nicholson, J. W. et al. Nanosecond pulse amplification in a 6000 μm2 effective area higher-order mode erbium-doped fiber amplifier. Paper JTh1l.2 in Quant. Electron. Las. Sci. Conf. (OSA, 2012).

  34. 34

    Stutzki, F. et al. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality. Opt. Lett. 37, 1073–1075 (2012).

    Article  ADS  Google Scholar 

  35. 35

    Eidam, T. et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power. Opt. Express 19, 255–260 (2011).

    Article  ADS  Google Scholar 

  36. 36

    Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

    Article  ADS  Google Scholar 

  37. 37

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  38. 38

    Pedersen, M. O. et al. High power polarization maintaining supercontinuum source. Paper p1-1 in Las. Electro-Opt. 2007 Inter. Quant. Electron. Conf. (2007).

  39. 39

    Onishi, M. et al. Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter. Opt. Fib. Technol. 4, 204–214 (1998).

    Article  ADS  Google Scholar 

  40. 40

    Travers, J. C. Blue extension of optical fibre supercontinuum generation. J. Opt. 12, 113001 (2010).

    Article  ADS  Google Scholar 

  41. 41

    Price, J. H. et al. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers. IEEE J. of Sel. Top. Quant. Electron. 13, 738–749 (2007).

    Article  ADS  Google Scholar 

  42. 42

    Gorbach, A. V. & Skryabin, D. V. Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres. Nature Photon. 1, 653–657 (2007).

    Article  ADS  Google Scholar 

  43. 43

    Hall, J. L. Nobel Lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).

    Article  ADS  Google Scholar 

  44. 44

    Udem, T., Reichert, J., Holzwarth, R. & Hänsch T. W. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 82, 3568–3571 (1999).

    Article  ADS  Google Scholar 

  45. 45

    Schibli, T. R. et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nature Photon. 2, 355–359 (2008).

    Article  ADS  Google Scholar 

  46. 46

    Lee, C.-C. et al. Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator. Opt. Lett. 37, 3084–3086 (2012).

    Article  ADS  Google Scholar 

  47. 47

    Washburn, B. R. et al. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. Opt. Lett. 29, 250–252 (2004).

    Article  ADS  Google Scholar 

  48. 48

    Hartl, I. et al. Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 × 1014 W/cm2 peak intensity at 136 MHz. Opt. Lett. 32, 2870–2872 (2007).

    Article  ADS  Google Scholar 

  49. 49

    Bethge, J., Jiang, J., Mohr, C., Fermann, M. & Hartl, I. Optically referenced Tm-fiber-laser frequency comb. Paper AT5A.3 in Adv. Solid-State Photon. (OSA, 2012).

  50. 50

    Kumkar, S. et al. Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system. Opt. Lett. 37, 554–556 (2012).

    Article  ADS  Google Scholar 

  51. 51

    Krauss, G. et al. All-passive phase locking of a compact Er:fiber laser system. Opt. Lett. 36, 540–542 (2011).

    Article  ADS  Google Scholar 

  52. 52

    Granzow, N. et al. Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide. Opt. Express 21, 10969–10977 (2013).

    Article  ADS  Google Scholar 

  53. 53

    Ruehl, A., Marcinkevicius, A., Fermann, M. E. & Hartl, I. 80 W, 120 fs Yb-fiber frequency comb. Opt. Lett. 35, 3015–3017 (2010).

    Article  ADS  Google Scholar 

  54. 54

    Wilken, T. et al. A frequency comb and precision spectroscopy experiment in space. Paper AF2H.5 in CLEO: Appl. Technol. (OSA, 2013).

  55. 55

    Zimmermann, M., Gohle, C., Holzwarth, R., Udem, T. & Hnsch T. W. Optical clockwork with an offset-free difference-frequency comb: accuracy of sum-and difference-frequency generation. Opt. Lett. 29, 310–312 (2004).

    Article  ADS  Google Scholar 

  56. 56

    Gambetta, A. et al. Milliwatt-level frequency combs in the 8-14 μm range via difference frequency generation from an Er: fiber oscillator. Opt. Lett. 38, 1155–1157 (2013).

    Article  ADS  Google Scholar 

  57. 57

    Adler, F. et al. Phase-stabilized, 1. 5 W frequency comb at 2.8–4.8 μm. Opt. Lett. 34, 1330–1332 (2009).

    Article  ADS  Google Scholar 

  58. 58

    Wong, S. T. et al. Self-phase-locked degenerate femtosecond optical parametric oscillator. Opt. Lett. 33, 1896–1898 (2008).

    Article  ADS  Google Scholar 

  59. 59

    Leindecker, N. et al. Octave-spanning ultrafast OPO with 2.6–6.1μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express 20, 7046–7053 (2012).

    Article  ADS  Google Scholar 

  60. 60

    Phillips, C. R. et al. Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system. Opt. Lett. 37, 2928–2930 (2012).

    Article  ADS  Google Scholar 

  61. 61

    Diddams, S. A. The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51–B62 (2010).

    Article  Google Scholar 

  62. 62

    Newbury, N. R. Searching for applications with a fine-tooth comb. Nature Photon. 5, 186–188 (2011).

    Article  ADS  Google Scholar 

  63. 63

    Maddaloni, P., Cancio, P. & De Natale, P. Topical review: optical comb generators for laser frequency measurement. Meas. Sci. Technol. 20, 2001–2012 (2009).

    Article  ADS  Google Scholar 

  64. 64

    Gatti, D. et al. High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb. Opt. Express 19, 17520–17527 (2011).

    Article  ADS  Google Scholar 

  65. 65

    Telle, H. R., Lipphardt, B. & Stenger, J. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B 74, 1–6 (2002).

    Article  ADS  Google Scholar 

  66. 66

    Galli, I. et al. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett. 107, 270802 (2011).

    Article  Google Scholar 

  67. 67

    Langridge, J. M. et al. Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source. Opt. Express 16, 10178–10188 (2008).

    Article  ADS  Google Scholar 

  68. 68

    Haakestad, M. W. et al. Broadband intracavity molecular spectroscopy with a degenerate mid-IR OPO. Paper CF2C.2 in CLEO: Sci. Innov. (2012).

  69. 69

    Foltynowicz, A. et al. Optical frequency comb spectroscopy. Faraday Discuss. 150, 23–31 (2011).

    Article  ADS  Google Scholar 

  70. 70

    Thorpe, M. J. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 91, 397–414 (2008).

    Article  ADS  Google Scholar 

  71. 71

    Méjean, G. et al. A transportable spectrometer for in situ and local measurements of iodine monoxide at mixing ratios in the 10−14 range. Appl. Phys. Lett. 100, 251110 (2012).

    Article  ADS  Google Scholar 

  72. 72

    Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).

    Article  ADS  Google Scholar 

  73. 73

    Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  74. 74

    Godbout, M., Deschênes, J.-D. & Genest, J. Spectrally resolved laser ranging with frequency combs. Opt. Express 18, 15981–15989 (2010).

    Article  ADS  Google Scholar 

  75. 75

    Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 13902 (2008).

    Article  ADS  Google Scholar 

  76. 76

    Giaccari, P., Deschênes, J.-D., Saucier, P., Genest, J. & Tremblay, P. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Express 16, 4347–4365 (2008).

    Article  ADS  Google Scholar 

  77. 77

    Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications. Opt. Express 19, 23483–23493 (2011).

    Article  ADS  Google Scholar 

  78. 78

    Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nature Photon. 7, 608–612 (2013).

    Article  ADS  Google Scholar 

  79. 79

    Jocher, C., Eidam, T., Steffen, H., Limpert, J., Tünnermann, A. 23 fs pulses at 250 W of average power from a FCPA with solid core nonlinear compression. Paper 86011F in SPIE LASE (OSA, 2013).

  80. 80

    Hädrich, S. et al. 100 W nonlinear compression in hollow core fibers at 1 MHz repetition rate. Paper AT1A.6 in Adv. Solid-State Photon. (OSA, 2012).

  81. 81

    Galvanauskas, A., Hariharan, A., Harter, D., Arbore, M. A. & Fejer, M. M. High-energy femtosecond pulse amlification in a quasi-phase-matched parametric amplifier. Opt. Lett. 23, 210–212 (1998).

    Article  ADS  Google Scholar 

  82. 82

    Biegert, J., Bates, P. K. & Chalus, O. New mid-infrared light sources. IEEE J. Select. Top. Quant. Electron. 18, 31–540 (2012).

    Article  Google Scholar 

  83. 83

    Schriever, C., Lochbrunner, S., Krok, P. & Riedle, E. Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system. Opt. Lett. 33, 192–194 (2008).

    Article  ADS  Google Scholar 

  84. 84

    Limpert, J. et al. Ultrafast fiber lasers for strong-field physics experiments. Las. Photon. Rev. 5, 634–646 (2011).

    Google Scholar 

  85. 85

    Krebs, M. et al. Towards isolated attosecond pulses at megahertz repetition rates. Nature Photon. 7, 555–559 (2013).

    Article  ADS  Google Scholar 

  86. 86

    Schulz, M. et al. Yb: YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification. Opt. Lett. 36, 2456–2458 (2011).

    Article  ADS  Google Scholar 

  87. 87

    Klenke, A. et al. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy. Opt. Express 19, 24280–24285 (2011).

    Article  ADS  Google Scholar 

  88. 88

    Hartl, I. et al. Multi-core leakage-channel fiber for coherent beam combining. Paper 7195–59 in Photonics West (SPIE, 2009).

  89. 89

    Paurisse, M., Hanna, M., Druon, F. & Georges, P. Wavefront control of a multicore ytterbium-doped pulse fiber amplifier by digital holography. Opt. Lett. 35, 1428–1430 (2010).

    Article  ADS  Google Scholar 

  90. 90

    Zhou, S., Wise, F. W. & Ouzounov, D. G. Divided-pulse amplification of ultrashort pulses. Opt. Lett. 32, 871–873 (2007).

    Article  ADS  Google Scholar 

  91. 91

    Zaouter, Y. et al. Femtosecond fiber chirped- and divided-pulse amplification system. Opt. Lett. 38, 106–108 (2013).

    Article  ADS  Google Scholar 

  92. 92

    Couny, F. & Benabid, F. Optical frequency comb generation in gas-filled hollow core photonic crystal fibres. J. Opt. A 11, 103002 (2009).

    Article  ADS  Google Scholar 

  93. 93

    Mourou, G., Brocklesby, B., Tajima, T. & Limpert, J. The future is fibre accelerators. Nature Photon. 7, 258–261 (2013).

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Martin E. Fermann.

Ethics declarations

Competing interests

M.E.F. is employed by IMRA, a commercial manufacturer of ultrafast fibre lasers.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fermann, M., Hartl, I. Ultrafast fibre lasers. Nature Photon 7, 868–874 (2013). https://doi.org/10.1038/nphoton.2013.280

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing