Imaging topological edge states in silicon photonics

Abstract

Topological features—global properties not discernible locally—emerge in systems ranging from liquid crystals to magnets to fractional quantum Hall systems. A deeper understanding of the role of topology in physics has led to a new class of matter—topologically ordered systems. The best known examples are quantum Hall effects, where insensitivity to local properties manifests itself as conductance through edge states that is insensitive to defects and disorder. Current research into engineering topological order primarily focuses on analogies to quantum Hall systems, where the required magnetic field is synthesized in non-magnetic systems. Here, we realize synthetic magnetic fields for photons at room temperature, using linear silicon photonics. We observe, for the first time, topological edge states of light in a two-dimensional system and show their robustness against intrinsic and introduced disorder. Our experiment demonstrates the feasibility of using photonics to realize topological order in both non-interacting and many-body regimes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Edge states around a magnetic domain.
Figure 3: Edge state propagation in a homogeneous magnetic field (8 × 8 array).
Figure 4: Edge state protection against a defect.

References

  1. 1

    Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    ADS  Article  Google Scholar 

  2. 2

    Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    ADS  Article  Google Scholar 

  3. 3

    König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    ADS  Article  Google Scholar 

  4. 4

    Girvin, S. M. in The Quantum Hall Effect: Novel Excitations and Broken Symmetries (eds Comtet, A., Jolicoeur, T., Ouvry, S. & David, F.) Course 2, 53–175 (Les Houches Lectures Session LXIX: Topological Aspects of Low Dimensional Systems, Springer, 2000).

    Google Scholar 

  5. 5

    Cooper, N. Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008).

    ADS  Article  Google Scholar 

  6. 6

    Lin, Y., Jiménez-García, K. & Spielman, I. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).

    ADS  Article  Google Scholar 

  7. 7

    Aidelsburger, M. et al. Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011).

    ADS  Article  Google Scholar 

  8. 8

    Dalibard, J., Gerbier, J., Juzeliūnas, F. & Öhberg, G. Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011).

    ADS  Article  Google Scholar 

  9. 9

    Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907–912 (2011).

    ADS  Article  Google Scholar 

  10. 10

    Haldane, F. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  Article  Google Scholar 

  12. 12

    Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nature Photon. 7, 153–158 (2013).

    ADS  Article  Google Scholar 

  13. 13

    Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photon. 6, 782–787 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Hafezi, M. & Rabl, P. Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672–7684 (2012).

    ADS  Article  Google Scholar 

  15. 15

    Umucalilar, R. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Khanikaev, A. et al. Photonic topological insulators. Nature Mater. 12, 233–239 (2013).

    ADS  Article  Google Scholar 

  17. 17

    Bernevig, B. & Zhang, S.-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    ADS  Article  Google Scholar 

  18. 18

    Kraus, Y., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Xia, F., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    ADS  Article  Google Scholar 

  20. 20

    Little, B. E. et al. Ultra-compact Si–SiO2 microring resonator optical channel dropping filters. IEEE Photon. Technol. Lett. 10, 549–551 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21

    Melloni, A. & Martinelli, M. Synthesis of direct-coupled-resonators bandpass filters for WDM systems. J. Lightwave Technol. 20, 296–303 (2002).

    ADS  Article  Google Scholar 

  22. 22

    Sakai, A., Fukazawa, T. & Baba, T. Estimation of polarization crosstalk at a micro-bend in Si photonic wire waveguide. J. Lightwave Technol. 22, 520–525 (2004).

    ADS  Article  Google Scholar 

  23. 23

    Dumon, P. et al. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).

    ADS  Article  Google Scholar 

  24. 24

    Vlasov, Y. & McNab, S. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622–1631 (2004).

    ADS  Article  Google Scholar 

  25. 25

    Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    ADS  Article  Google Scholar 

  26. 26

    Cooper, M. et al. Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. Opt. Lett. 35, 784–786 (2010).

    ADS  Article  Google Scholar 

  27. 27

    Laughlin, R. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981).

    ADS  Article  Google Scholar 

  28. 28

    Halperin, B. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    ADS  Article  Google Scholar 

  29. 29

    Morichetti, F. et al. Roughness induced backscattering in optical silicon waveguides. Phys. Rev. Lett. 104, 033902 (2010).

    ADS  Article  Google Scholar 

  30. 30

    Waks, E. et al. Secure communication: quantum cryptography with a photon turnstile. Nature 420, 762 (2002).

    ADS  Article  Google Scholar 

  31. 31

    Srinivasan, K. & Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature 450, 862–865 (2007).

    ADS  Article  Google Scholar 

  32. 32

    Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    ADS  Article  Google Scholar 

  33. 33

    Faraon, A. et al. Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade. Nature Phys. 4, 859–863 (2008).

    ADS  Article  Google Scholar 

  34. 34

    Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012).

    ADS  Article  Google Scholar 

  35. 35

    Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Chen, K. Srinivasan, M. Lukin, A. Melloni, M. Fournier, G. Solomon and E. Waks for stimulating discussions and experimental help. M.H. thanks the Institute for Quantum Optics and Quantum Information (Innsbruck) for hospitality. This research was supported by a US Army Research Office Multidisciplinary University Research Initiative award (W911NF0910406) and the National Science Foundation through the Physics Frontier Center at the Joint Quantum Institute. Disclaimer: Certain commercial equipment, instruments or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment are necessarily the best available for the purpose.

Author information

Affiliations

Authors

Contributions

M.H. conceived the experiment. M.H., J.F., A.M. and J.M.T. designed the chips. M.H., S.M. and J.F. carried out the experiment and analysed the data. M.H. and J.M.T. wrote the manuscript. All authors contributed considerably.

Corresponding author

Correspondence to M. Hafezi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 889 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hafezi, M., Mittal, S., Fan, J. et al. Imaging topological edge states in silicon photonics. Nature Photon 7, 1001–1005 (2013). https://doi.org/10.1038/nphoton.2013.274

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing