Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hyperbolic metamaterials

Subjects

A Corrigendum to this article was published on 28 November 2013

This article has been updated

Abstract

Electromagnetic metamaterials, artificial media created by subwavelength structuring, are useful for engineering electromagnetic space and controlling light propagation. Such materials exhibit many unusual properties that are rarely or never observed in nature. They can be employed to realize useful functionalities in emerging metadevices based on light. Here, we review hyperbolic metamaterials — one of the most unusual classes of electromagnetic metamaterials. They display hyperbolic (or indefinite) dispersion, which originates from one of the principal components of their electric or magnetic effective tensor having the opposite sign to the other two principal components. Such anisotropic structured materials exhibit distinctive properties, including strong enhancement of spontaneous emission, diverging density of states, negative refraction and enhanced superlensing effects.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Isofrequency surfaces of extraordinary waves in hyperbolic metamaterials.
Figure 2: Examples of hyperbolic metamaterials.
Figure 3: Negative refraction, partial focusing and lensing in hyperbolic materials.
Figure 4: Green function and resonance cones in hyperbolic media.
Figure 5: Spontaneous emission enhancement in hyperbolic metamaterials.

Change history

  • 28 November 2013

    In the version of this Review published in print, “Si/Ge (ref. 23)” was listed on the eight line of the second column on the second page (page 949). This should have read “Ag/Ge (ref. 23)”. This error has been corrected in both the HTML and PDF versions of the Review.

References

  1. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10, 509–514 (1968).

    ADS  Article  Google Scholar 

  2. Smith, D. R. & Schurig, D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90, 077405 (2003).

    ADS  Article  Google Scholar 

  3. Lindell, I. V., Tretyakov, S. A., Nikoskinen, K. I. & Ilvonen, S. BW media—media with negative parameters, capable of supporting backward waves. Microwave Opt. Technol. Lett. 31, 129–133 (2001).

    Article  Google Scholar 

  4. Belov, P. A. Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis. Microwave Opt. Technol. Lett. 37, 259–263 (2003).

    Article  Google Scholar 

  5. Fisher, R. K. & Gould, R. W. Resonance cones in the field pattern of a short antenna in an anisotropic plasma. Phys. Rev. Lett. 22, 1093–1095 (1969).

    ADS  Article  Google Scholar 

  6. Alekseyev, L. V., Podolskiy, V. A. & Narimanov, E. E. Homogeneous hyperbolic systems for terahertz and far-infrared frequencies. Advances Optoelectron. 2012, 267564 (2012).

    Article  Google Scholar 

  7. Noginov, M., Lapine, M., Podolskiy, V. & Kivshar, Y. Focus issue: hyperbolic metamaterials. Opt. Express 21, 14895–14897 (2013).

    ADS  Article  Google Scholar 

  8. Jacob, Z., Smolyaninov, I. & Narimanov, E. Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012).

    ADS  Article  Google Scholar 

  9. Biehs, S. A., Tschikin, M. & Ben-Abdallah, P. Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 109, 104301 (2012).

    ADS  Article  Google Scholar 

  10. Li, J., Fok, L., Yin, X., Bartal, G. & Zhang, X. Experimental demonstration of an acoustic magnifying hyperlens. Nature Mater. 8, 931–934 (2009).

    ADS  Article  Google Scholar 

  11. Smolyaninov, I. I. & Narimanov, E. E. Metric signature transitions in optical metamaterials. Phys. Rev. Lett. 105, 067402 (2010).

    ADS  Article  Google Scholar 

  12. Smolyaninov, I. I., Hung, Y.-J. & Hwang, E. Experimental modeling of cosmological inflation with metamaterials. Phys. Lett. A 376, 2575–2579 (2012).

    ADS  Article  Google Scholar 

  13. Smolyaninov, I. I. & Kildishev, A. V. Light propagation through random hyperbolic media: from a pile of sand to large scale structure of present day universe. Preprint at http://arXiv.org/abs/1202.1993 (2012).

  14. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    ADS  Article  Google Scholar 

  15. Rho, J. et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nature Commun. 1, 143 (2010).

    ADS  Article  Google Scholar 

  16. Ishii, S., Kildishev, A. V., Narimanov, E., Shalaev, V. M. & Drachev, V. P. Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Las. Photon. Rev. 7, 265–271 (2013).

    ADS  Article  Google Scholar 

  17. Smith, D. R., Schurig, D., Mock, J. J., Kolinko, P. & Rye, P. Partial focusing of radiation by a slab of indefinite media. Appl. Phys. Lett. 84, 2244–2246 (2004).

    ADS  Article  Google Scholar 

  18. Balmain, K. G., Lüttgen, A. A. E. & Kremer, P. C. Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial. IEEE Ant. Wireless Propag. Lett. 1, 146–149 (2002).

    ADS  Article  Google Scholar 

  19. Noginov, M. A. et al. Controlling spontaneous emission with metamaterials. Opt. Lett. 35, 1863–1865 (2010).

    ADS  Article  Google Scholar 

  20. Tumkur, T. et al. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl. Phys. Lett. 99, 151115 (2011).

    ADS  Article  Google Scholar 

  21. Krishnamoorthy, H. N. S., Jacob, Z., Narimanov, E., Kretzschmar, I. & Menon, V. M. Topological transitions in metamaterials. Science 336, 205–209 (2012).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. Kim, J. et al. Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 20, 8100–8116 (2012).

    ADS  Article  Google Scholar 

  23. Yang, X., Yao, J., Rho, J., Yin, X. & Zhang, X. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nature Photon. 6, 450–454 (2012).

    ADS  Article  Google Scholar 

  24. Agranovich, V. M. & Kravtsov, V. E. Notes on crystal optics of superlattices. Solid State Commun. 55, 85–90 (1985).

    ADS  Article  Google Scholar 

  25. Shen, L., Yang, T.-J. & Chau, Y.-F. Effect of internal period on the optical dispersion of indefinite-medium materials. Phys. Rev. B 77, 205124 (2008).

    ADS  Article  Google Scholar 

  26. Orlov, A. A., Voroshilov, P. M., Belov, P. A. & Kivshar, Y. S. Engineered optical nonlocality in nanostructured metamaterials. Phys. Rev. B 84, 045424 (2011).

    ADS  Article  Google Scholar 

  27. Chebykin, A. V. et al. Nonlocal effective medium model for multilayered metal-dielectric metamaterials. Phys. Rev. B 84, 115438 (2011).

    ADS  Article  Google Scholar 

  28. Chebykin, A. V., Orlov, A. A., Simovski, C. R., Kivshar, Y. S. & Belov, P. A. Nonlocal effective parameters of multilayered metal-dielectric metamaterials. Phys. Rev. B 86, 115420 (2012).

    ADS  Article  Google Scholar 

  29. Hoffman, A. J. et al. Negative refraction in semiconductor metamaterials. Nature Mater. 6, 946–950 (2007).

    ADS  Article  Google Scholar 

  30. Tumkur, T. U., Gu, L., Kitur, J. K., Narimanov, E. E. & Noginov, M. A. Control of absorption with hyperbolic metamaterials. Appl. Phys. Lett. 100, 161103 (2012).

    ADS  Article  Google Scholar 

  31. Korobkin, D. et al. Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium. Opt. Express 18, 22734–22746 (2010).

    ADS  Article  Google Scholar 

  32. Schilling, J. Uniaxial metallo-dielectric metamaterials with scalar positive permeability. Phys. Rev. E 74, 046618 (2006).

    ADS  Article  Google Scholar 

  33. Cortes, C. L., Newman, W., Molesky, S. & Jacob, Z. Quantum nanophotonics using hyperbolic metamaterials. J. Optics 14, 063001 (2012).

    ADS  Article  Google Scholar 

  34. Bogdanov, A. A. & Suris, R. A. Effect of the anisotropy of a conducting layer on the dispersion law of electromagnetic waves in layered metal-dielectric structures. JETP Lett. 96, 49–55 (2012).

    ADS  Article  Google Scholar 

  35. Vincenti, M. A. et al. Loss compensation in metal-dielectric structures in negative-refraction and super-resolving regimes. Phys. Rev. A 80, 053807 (2009).

    ADS  Article  Google Scholar 

  36. Ni, X. et al. Loss-compensated and active hyperbolic metamaterials. Opt. Express 19, 25242–25254 (2011).

    ADS  Article  Google Scholar 

  37. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    ADS  Article  Google Scholar 

  38. Naik, G. V., Liu, J., Kildishev, A. V., Shalaev, V. M. & Boltasseva, A. Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials. Proc. Natl Acad. Sci. USA 109, 8834–8838 (2012).

    ADS  Article  Google Scholar 

  39. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

    ADS  Article  Google Scholar 

  40. Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006).

    ADS  Article  Google Scholar 

  41. Smolyaninov, I. I., Hung, Y.-J. & Davis, C. C. Magnifying superlens in the visible frequency range. Science 315, 1699–1701 (2007).

    ADS  Article  Google Scholar 

  42. Simovski, C. R., Belov, P. A., Atrashchenko, A. V. & Kivshar, Y. S. Wire metamaterials: physics and applications. Adv. Mater. 24, 4229–4248 (2012).

    Article  Google Scholar 

  43. Silveirinha, M. G. Nonlocal homogenization model for a periodic array of ε-negative rods. Phys. Rev. E 73, 046612 (2006).

    ADS  Article  Google Scholar 

  44. Belov, P. A. et al. Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B 67, 113103 (2003).

    ADS  Article  Google Scholar 

  45. Wells, B. M., Zayats, A. V. & Podolskiy, V. A. Nonlocal response of plasmonic nanorod metamaterials. Paper JTh2A.81 in CLEO: QELS-Fundamental Science (OSA, 2012).

    Book  Google Scholar 

  46. Kanungo, J. & Schilling, J. Experimental determination of the principal dielectric functions in silver nanowire metamaterials. Appl. Phys. Lett. 97, 021903 (2010).

    ADS  Article  Google Scholar 

  47. Evans, P. et al. Growth and properties of gold and nickel nanorods in thin film alumina. Nanotechnology 17, 5746–5753 (2006).

    ADS  Article  Google Scholar 

  48. Noginov, M. A. et al. Bulk photonic metamaterial with hyperbolic dispersion. Appl. Phys. Lett. 94, 151105 (2009).

    ADS  Article  Google Scholar 

  49. Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008).

    ADS  Article  Google Scholar 

  50. Kabashin, A. V. et al. Plasmonic nanorod metamaterials for biosensing. Nature Mater. 8, 867–871 (2009).

    ADS  Article  Google Scholar 

  51. Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotech. 6, 107–111 (2011).

    ADS  Article  Google Scholar 

  52. Custodio, L. M. et al. Birefringence swap at the transition to hyperbolic dispersion in metamaterials. Phys. Rev. B 85, 165408 (2012).

    ADS  Article  Google Scholar 

  53. Atakaramians, S., Argyros, A., Fleming, S. C. & Kuhlmey, B. T. Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions. J. Opt. Soc. Am. B 29, 2462–2477 (2012).

    ADS  Article  Google Scholar 

  54. Smolyaninov, I. I. Vacuum in a strong magnetic field as a hyperbolic metamaterial. Phys. Rev. Lett. 107, 253903 (2011).

    ADS  Article  Google Scholar 

  55. Yao, J., Yang, X., Yin, X., Bartal, G. & Zhang, X. Three-dimensional nanometer-scale optical cavities of indefinite medium. Proc. Natl Acad. Sci. USA 108, 11327–11331 (2011).

    ADS  Article  Google Scholar 

  56. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    ADS  Article  Google Scholar 

  57. Kruk, S. S., Powell, D. A., Minovich, A., Neshev, D. N. & Kivshar, Y. S. Spatial dispersion of multilayer fishnet metamaterials. Opt. Express 20, 15100–15105 (2012).

    ADS  Article  Google Scholar 

  58. Sun, J., Zhou, J., Li, B. & Kang, F. Indefinite permittivity and negative refraction in natural material: graphite. Appl. Phys. Lett. 98, 101901 (2011).

    ADS  Article  Google Scholar 

  59. Wang, B., Zhang, X., García-Vidal, F. J., Yuan, X. & Teng, J. Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys. Rev. Lett. 109, 073901 (2012).

    ADS  Article  Google Scholar 

  60. Iorsh, I. V., Mukhin, I. S., Shadrivov, I. V., Belov, P. A. & Kivshar, Y. S. Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B 87, 075416 (2013).

    ADS  Article  Google Scholar 

  61. Andryieuski, A., Lavrinenko, A. V. & Chigrin, D. N. Graphene hyperlens for terahertz radiation. Phys. Rev. B 86, 121108 (2012).

    ADS  Article  Google Scholar 

  62. Smith, D. R., Kolinko, P. & Schurig, D. Negative refraction in indefinite media. J. Opt. Soc. Am. B 21, 1032–1043 (2004).

    ADS  Article  Google Scholar 

  63. Mackay, T. G., Lakhtakia, A. & Depine, R. A. Uniaxial dielectric media with hyperbolic dispersion relations. Microwave Opt. Technol. Lett. 48, 363–367 (2006).

    Article  Google Scholar 

  64. Fang, A., Koschny, T. & Soukoulis, C. M. Optical anisotropic metamaterials: negative refraction and focusing. Phys. Rev. B 79, 245127 (2009).

    ADS  Article  Google Scholar 

  65. Parazzoli, C. G., Greegor, R. B., Li, K., Koltenbah, B. E. C. & Tanielian, M. Experimental verification and simulation of negative index of refraction using Snell's law. Phys. Rev. Lett. 90, 107401 (2003).

    ADS  Article  Google Scholar 

  66. Ma, Z., Wang, P., Cao, Y., Tang, H. & Ming, H. Linear polarizer made of indefinite media. Appl. Phys. B 84, 261–264 (2006).

    ADS  Article  Google Scholar 

  67. Schurig, D. & Smith, D. R. Spatial filtering using media with indefinite permittivity and permeability tensors. Appl. Phys. Lett. 82, 2215–2217 (2003).

    ADS  Article  Google Scholar 

  68. Rizza, C., Ciattoni, A., Spinozzi, E. & Columbo, L. Terahertz active spatial filtering through optically tunable hyperbolic metamaterials. Opt. Lett. 37, 3345–3347 (2012).

    ADS  Article  Google Scholar 

  69. Liu, H. et al. Focusing of vectorial fields by a slab of indefinite media. J. Opt. A 11, 105103 (2009).

    ADS  Article  Google Scholar 

  70. Li, G., Li, J. & Cheah, K. W. Subwavelength focusing using a hyperbolic medium with a single slit. Appl. Opt. 50, G27–G30 (2011).

    Article  Google Scholar 

  71. Podolskiy, V. A. & Narimanov, E. E. Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B 71, 201101 (2005).

    ADS  Article  Google Scholar 

  72. Alekseyev, L. V. & Narimanov, E. Slow light and 3D imaging with non-magnetic negative index systems. Opt. Express 14, 11184–11193 (2006).

    ADS  Article  Google Scholar 

  73. Elser, J. & Podolskiy, V. A. Scattering-free plasmonic optics with anisotropic metamaterials. Phys. Rev. Lett. 100, 066402 (2008).

    ADS  Article  Google Scholar 

  74. Xu, G.-D., Pan, T., Zang, T.-C. & Sun, J. Characteristics of guided waves in indefinite-medium waveguides. Opt. Commun. 281, 2819–2825 (2008).

    ADS  Article  Google Scholar 

  75. Zhang, Z. & Fan, Y. Propagation properties of a wave in a disordered multilayered system containing hyperbolic metamaterials. J. Opt. Soc. Am. B 29, 2995–2999 (2012).

    ADS  Article  Google Scholar 

  76. He, Y., He, S. & Yang, X. Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials. Opt. Lett. 37, 2907–2909 (2012).

    ADS  Article  Google Scholar 

  77. Belov, P. A. & Hao, Y. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B 73, 113110 (2006).

    ADS  Article  Google Scholar 

  78. Lemoult, F., Lerosey, G., de Rosny, J. & Fink, M. Resonant metalenses for breaking the diffraction barrier. Phys. Rev. Lett. 104, 203901 (2010).

    ADS  Article  Google Scholar 

  79. Yang, K. Y. et al. Subwavelength imaging with quantum metamaterials. Phys. Rev. B 86, 075309 (2012).

    ADS  Article  Google Scholar 

  80. Wang, W. et al. Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt. Express 16, 21142–21148 (2008).

    ADS  Article  Google Scholar 

  81. Xiong, Y., Liu, Z. & Zhang, X. A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Appl. Phys. Lett. 94, 203108 (2009).

    ADS  Article  Google Scholar 

  82. Smith, E. J., Liu, Z., Mei, Y. F. & Schmidt, O. G. System investigation of a rolled-up metamaterial optical hyperlens structure. Appl. Phys. Lett. 95, 083104 (2009).

    ADS  Article  Google Scholar 

  83. Kildishev, A. V., Chettiar, U. K., Jacob, Z., Shalaev, V. M. & Narimanov, E. E. Materializing a binary hyperlens design. Appl. Phys. Lett. 94, 071102 (2009).

    ADS  Article  Google Scholar 

  84. Liu, Z. et al. Hyper-interface, the bridge between radiative wave and evanescent wave. Appl. Phys. Lett. 96, 113507 (2010).

    ADS  Article  Google Scholar 

  85. Kildishev, A. V. & Narimanov, E. E. Impedance-matched hyperlens. Opt. Lett. 32, 3432–3434 (2007).

    ADS  Article  Google Scholar 

  86. Ikonen, P., Simovski, C., Tretyakov, S., Belov, P. & Hao, Y. Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime. Appl. Phys. Lett. 91, 104102 (2007).

    ADS  Article  Google Scholar 

  87. Lu, D. & Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nature Commun. 3, 1205 10.1038/ncomms2176(2012).

    ADS  Article  Google Scholar 

  88. Potemkin, A. S., Poddubny, A. N., Belov, P. A. & Kivshar, Y. S. Green function for hyperbolic media. Phys. Rev. A 86, 023848 (2012).

    ADS  Article  Google Scholar 

  89. Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  90. Poddubny, A. N., Belov, P. A., Ginzburg, P., Zayats, A. V. & Kivshar, Y. S. Microscopic model of Purcell enhancement in hyperbolic metamaterials. Phys. Rev. B 86, 035148 (2012).

    ADS  Article  Google Scholar 

  91. Chshelokova, A. V. et al. Hyperbolic transmission-line metamaterials. J. Appl. Phys. 112, 073116 (2012).

    ADS  Article  Google Scholar 

  92. Siddiqui, O. F. & Eleftheriades, G. V. Study of resonance-cone propagation in truncated hyperbolic metamaterial grids using transmission-line matrix simulations. J. Franklin Institute 348, 1285–1297 (2011).

    MATH  Article  Google Scholar 

  93. Thongrattanasiri, S. & Podolskiy, V. A. Hypergratings: nanophotonics in planar anisotropic metamaterials. Opt. Lett. 34, 890–892 (2009).

    ADS  Article  Google Scholar 

  94. Ishii, S., Drachev, V. P. & Kildishev, A. V. Diffractive nanoslit lenses for subwavelength focusing. Opt. Commun. 285, 3368–3372 (2012).

    ADS  Article  Google Scholar 

  95. Ma, C. & Liu, Z. A super resolution metalens with phase compensation mechanism. Appl. Phys. Lett. 96, 183103 (2010).

    ADS  Article  Google Scholar 

  96. Ma, C. & Liu, Z. Designing super-resolution metalenses by the combination of metamaterials and nanoscale plasmonic waveguide couplers. J. Nanophotonics 5, 051604 (2011).

    ADS  Article  Google Scholar 

  97. Narimanov, E. E., Li, H., Barnakov, Y. A., Tumkur, T. U. & Noginov, M. A. Reduced reflection from roughened hyperbolic metamaterial. Opt. Express 21, 14956–14961 (2013).

    ADS  Article  Google Scholar 

  98. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  99. Iorsh, I., Poddubny, A., Orlov, A., Belov, P. & Kivshar, Y. S. Spontaneous emission enhancement in metal–dielectric metamaterials. Phys. Lett. A 376, 185–187 (2012).

    ADS  Article  Google Scholar 

  100. Xie, H. Y., Leung, P. T. & Tsai, D. P. Molecular decay rates and emission frequencies in the vicinity of an anisotropic metamaterial. Solid State Commun. 149, 625–629 (2009).

    ADS  Article  Google Scholar 

  101. Kidwai, O., Zhukovsky, S. V. & Sipe, J. E. Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation. Opt. Lett. 36, 2530–2532 (2011).

    ADS  Article  Google Scholar 

  102. Kidwai, O., Zhukovsky, S. V. & Sipe, J. E. Effective-medium approach to planar multilayer hyperbolic metamaterials: strengths and limitations. Phys. Rev. A 85, 053842 (2012).

    ADS  Article  Google Scholar 

  103. Yan, W., Wubs, M. & Mortensen, N. A. Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity. Phys. Rev. B 86, 205429 (2012).

    ADS  Article  Google Scholar 

  104. Poddubny, A. N., Belov, P. A. & Kivshar, Y. S. Spontaneous radiation of a finite-size dipole emitter in hyperbolic media. Phys. Rev. A 84, 023807 (2011).

    ADS  Article  Google Scholar 

  105. Glazov, M. M., Ivchenko, E. L., Poddubny, A. N. & Khitrova, G. Purcell factor in small metallic cavities. Phys. Solid State 53, 1753–1760 (2011).

    ADS  Article  Google Scholar 

  106. Guo, Y., Cortes, C. L., Molesky, S. & Jacob, Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012).

    ADS  Article  Google Scholar 

  107. Guo, Y. & Jacob, Z. Thermal hyperbolic metamaterials. Opt. Express 21, 15014–15019 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Education and Science of the Russian Federation (grants No. 11.G34.31.0020, 14.B37.21.1649, 14.B37.21.1941), the Russian Foundation for Basic Research (grants No. 12-02-12097,12-02-00757,12-02-33034), Grant of the President of Russian Federation, EC projects POLAPHEN and SPANLG4Q, the Dynasty Foundation, and the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Poddubny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Poddubny, A., Iorsh, I., Belov, P. et al. Hyperbolic metamaterials. Nature Photon 7, 948–957 (2013). https://doi.org/10.1038/nphoton.2013.243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.243

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing