Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relativistic plasma nanophotonics for ultrahigh energy density physics

Abstract

The heating of dense matter to extreme temperatures motivates the development of powerful lasers1,2,3,4. However, the barrier the critical electron density imposes to light penetration into ionized materials results in the deposition of most of the laser energy into a thin surface layer at typically only 0.1% of solid density. Here, we demonstrate that trapping of femtosecond laser pulses of relativistic intensity deep within ordered nanowire arrays can volumetrically heat dense matter into a new ultrahot plasma regime. Electron densities nearly 100 times greater than the typical critical density and multi-keV temperatures are achieved using laser pulses of only 0.5 J energy. We obtained extraordinarily high degrees of ionization (for example, 52 times ionized Au) and gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the centre of the Sun.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIC simulation and spectra from plasma generated by femtosecond pulse irradiation of a vertically aligned array of 55-nm-diameter Ni nanowires.
Figure 2: Single-shot M-shell spectra of vertically aligned arrays of 80-nm-diameter Au nanowires compared with the spectra from a flat, polished Au target.
Figure 3: Generation of He-like ions in the volumetrically heated Ni plasmas.
Figure 4: Parameter space of temperature–electron density showing the plasma regime accessible by irradiation of aligned nanowire arrays relative to other high-energy density plasmas.

Similar content being viewed by others

References

  1. Glenzer, S. H. et al. Symmetric inertial confinement fusion implosions at ultra-high laser energies. Science 327, 1228–1231 (2010).

    Article  ADS  Google Scholar 

  2. Fujiota, S. et al. X-ray astronomy in the laboratory with a miniature compact object by laser-driven implosion. Nature Phys. 5, 821–825 (2009).

    Article  ADS  Google Scholar 

  3. Robey, H. F. et al. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the Omega Laser Facility and their scaling to NIF. Phys. Rev. Lett. 103, 145003 (2009).

    Article  ADS  Google Scholar 

  4. Glenzer, S. H. et al. Cryogenic thermonuclear fuel implosions on the National Ignition Facility. Phys. Plasmas 19, 1228–1231 (2012).

    Article  Google Scholar 

  5. Fournier, K. B. et al. Efficient multi-keV X-ray sources from Ti-doped aerogel targets. Phys. Rev. Lett. 92, 165005 (2004).

    Article  ADS  Google Scholar 

  6. Matthews, D. L. et al. Characterization of laser produced plasma X-ray sources for use in X-ray radiography. J. Appl. Phys. 54, 4260–4268 (1983).

    Article  ADS  Google Scholar 

  7. Foord, M. E. et al. Ionization processes and charge-state distribution in a highly ionized high-Z laser-produced plasma. Phys. Rev. Lett. 85, 992–995 (2000).

    Article  ADS  Google Scholar 

  8. Heeter, R. F. et al. Benchmark measurements of the ionization balance of non-local- thermodynamic-equilibrium gold plasmas. Phys. Rev. Lett. 99, 195001 (2007).

    Article  ADS  Google Scholar 

  9. Young, B. K. F., Wilson, B. G., Price, D. F. & Stewart, R. E. Measurement of X-ray emission and thermal transport in near-solid-density plasmas heated by 130 fs laser pulses. Phys. Rev. E 58, 4929–4936 (1998).

    Article  ADS  Google Scholar 

  10. Guethlein, G., Foord, M. E. & Price, D. Electron temperature measurements of solid density plasmas produced by intense ultrashort laser pulses. Phys. Rev. Lett. 77, 1055–1058 (1996).

    Article  ADS  Google Scholar 

  11. Theobald, W. et al. Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser-irradiated Cu foil targets. Phys. Plasmas 13, 043102 (2006).

    Article  ADS  Google Scholar 

  12. Hobbs, L. M. et al. Demonstration of short pulse laser heating of solid targets to temperatures of 600 eV at depths of 30 µm using the Orion high power laser. Bull. Am. Phys. Soc. 57, 156 (2012).

    Google Scholar 

  13. Huntington, C. M. et al. Spectral analysis of X-ray emission created by intense laser irradiation of copper materials. Rev. Sci. Instrum. 83, 10E114 (2012).

    Article  Google Scholar 

  14. Ditmire, T. et al. High-energy ions produced in explosions of superheated atomic clusters. Nature 386, 54–56 (1997).

    Article  ADS  Google Scholar 

  15. Murnane, M. M. et al. Efficient coupling of high-intensity subpicosecond laser pulses into solids. Appl. Phys. Lett. 62, 1068–1070 (1993).

    Article  ADS  Google Scholar 

  16. Gordon, S. P., Donnelly, T., Sullivan, A., Mamster, H. & Falcone, R. W. X-rays from microstructured targets heated by femtosecond lasers. Opt. Lett. 19, 484–487 (1994).

    Article  ADS  Google Scholar 

  17. Rajeev, P. P. Taneja, P., Ayyub, P., Sandhu, A. S. & Kumar, G. Metal nanoplasmas as bright sources of hard X-ray pulses. Phys. Rev. Lett. 90, 115002 (2003).

    Article  ADS  Google Scholar 

  18. Sumeruk, H. A. et al. Control of strong-laser-field coupling to electrons in solid targets with wavelength-scale spheres. Phys. Rev. Lett. 98, 045001 (2007).

    Article  ADS  Google Scholar 

  19. Khattak, F. Y. et al. Enhanced He-α emission from ‘smoked’ Ti targets irradiated with 400 nm, 45 fs laser pulses. Europhys. Lett. 72, 242–248 (2005).

    Article  ADS  Google Scholar 

  20. Kulcsár, G. et al. Intense picosecond X-ray pulses from laser plasmas by use of nanostructured ‘velvet’ targets. Phys. Rev. Lett. 84, 5149–5152 (2000).

    Article  ADS  Google Scholar 

  21. Mondal, S. et al. Highly enhanced hard X-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses. Phys. Rev. B 83, 035408 (2011).

    Article  ADS  Google Scholar 

  22. Ovchinnikov, A. V. et al. Characteristic X-rays generation under the action of femtosecond laser pulses on nano-structured targets. Laser Particle Beams 29, 249–254 (2011).

    Article  Google Scholar 

  23. Nishikawa, T., Suzuki, S., Watanabe, Y., Zhou, O. & Nakano, H. Efficient water-window X-ray pulse generation from femtosecond-laser-produced plasma by using a carbon nanotube target. Appl. Phys. B 78, 885–890 (2004).

    Article  ADS  Google Scholar 

  24. Brunel, F. Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52–55 (1987).

    Article  ADS  Google Scholar 

  25. Prieto, A. L. et al. Electrodeposition of ordered Bi2Te3 nanowire arrays. J. Am. Chem. Soc. 123, 7160–7161 (2001).

    Article  Google Scholar 

  26. Busquet, M., Pain, D., Bauche, J. & Luc-Koenig, E. Study of X-ray spectrum of laser-produced Au plasmas. Phys. Scripta 31, 137–148 (1985).

    Article  ADS  Google Scholar 

  27. MacGowan, B. J. et al. Laser–plasma interactions in ignition scale Hohlraum plasmas. Phys. Plasmas 3, 2029–2040 (1996).

    Article  ADS  Google Scholar 

  28. Pukhov, A. Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61, 425–433 (1999).

    Article  ADS  Google Scholar 

  29. Zhidkov, A. & Sasaki, A. Effect of field ionization on interaction of an intense subpicosecond laser pulse with foils. Phys. Plasmas 7, 1341–1344 (2000).

    Article  ADS  Google Scholar 

  30. Karmakar, A. & Pukhov, A. Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Particle Beams 25, 371–377 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Defense Threat Reduction Agency grant (HDTRA-1-10-1-0079) and by the HEDLP programme of the Office of Science of the US Department of Energy. The experiments were conducted at facilities from the National Science Foundation (NSF) ERC for Extreme Ultraviolet Science and Technology at Colorado State University using equipment develop under NSF grant MRI-ARRA 09-561. A.P. acknowledges support from DFG funded project TR18. The authors acknowledge the contributions of D. Ryan, C. Benton, A. Nobel and M. Woolston in relation to the experimental set-up, E. Jackson for nanowire target fabrication and C. Menoni and D. Patel for providing high-damage-threshold coatings. The authors thank J. Reader, J. Gillaspy, A. Kramida and J. Curry from NIST, Gaithersburg, for providing the atomic spectral data used to interpret the spectra, and R. London, R. Lee and M. Schneider for discussions and references.

Author information

Authors and Affiliations

Authors

Contributions

V.N.S. and J.J.R. conceived the experiment. A.Pu. developed the PIC model and performed the simulations. J.J.R. and M.A.P. designed the experiment. M.A.P., R.H., C.B. and J.J.R. carried out the experiment and acquired the data. Y.W., B.M.L. and J.J.R. developed the ultrashort pulse laser. Y.W., L.Y. and S.W. contributed to making the laser operational for the experiments and R.H., A.P. and C.B. developed the nanowire targets. V.N.S. conducted hydrodynamic simulations and V.N.S., A.Pu. and J.J.R. interpreted the simulations. M.A.P., J.J.R., V.N.S. and A.Pu. wrote the paper, with contributions from the other authors.

Corresponding author

Correspondence to Jorge J. Rocca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 630 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purvis, M., Shlyaptsev, V., Hollinger, R. et al. Relativistic plasma nanophotonics for ultrahigh energy density physics. Nature Photon 7, 796–800 (2013). https://doi.org/10.1038/nphoton.2013.217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.217

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing