Observing molecular spinning via the rotational Doppler effect

Article metrics

Abstract

When a wave is reflected from a moving object, its frequency is Doppler shifted1. Similarly, when circularly polarized light is scattered from a rotating object, a rotational Doppler frequency shift may be observed2,3, with manifestations ranging from the quantum world (fluorescence spectroscopy, rotational Raman scattering and so on3,4) to satellite-based global positioning systems5. Here, we observe for the first time the Doppler frequency shift phenomenon for a circularly polarized light wave propagating through a gas of synchronously spinning molecules. An ensemble of such spinning molecules was produced by double-pulse laser excitation, with the first pulse aligning the molecules and the second (linearly polarized at a 45° angle) causing a concerted unidirectional rotation of the ‘molecular propellers’6,7. We observed the resulting rotating birefringence of the gas by detecting a Doppler-shifted wave that is circularly polarized in a sense opposite to that of the incident probe.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: UDR excitation scheme.
Figure 2: Experimental set-up.
Figure 3: Experimentally observed RDS for deuterium molecules.
Figure 4: Experimentally observed RDS for nitrogen.

References

  1. 1

    Doppler, C. J. Ueber das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abhandlungen der Königl. Böhm. Gesellschaft der Wissenschaften. 2, 465–482 (1842, reissued 1903).

  2. 2

    Bialynicki, B. I. & Bialynicka, B. Z. in The Angular Momentum of Light (eds Andrews, D. L. & Babiker, M.) 162–173 (Cambridge Univ. Press, 2012).

  3. 3

    Garetz, B. A. & Arnold, S. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave retardation plate. Opt. Commun. 31, 1–3 (1979).

  4. 4

    Bialynicki, B. I. & Bialynicka, B. Z. Rotational frequency shift. Phys. Rev. Lett. 78, 2539–2542 (1997).

  5. 5

    Ashby, N. Relativity in the global positioning system. Living Rev. Relativ. 6, 1–42 (2003).

  6. 6

    Fleischer, S., Khodorkovsky, Y., Prior, Y. & Averbukh, I. Sh. Controlling the sense of molecular rotation. New J. Phys. 11, 105039 (2009).

  7. 7

    Kitano, K., Hasegawa, H. & Ohshima, Y. Ultrafast angular momentum orientation by linearly polarized laser fields. Phys. Rev. Lett. 103, 223002 (2009).

  8. 8

    Einstein, A. Zur Elektrodynamik bewegter Körper. Ann. Phys. (Leipz.) 17, 891–921 (1905); reprinted in Stachel, J. (ed.) Einstein's Miraculous Year: Five papers that Changed the Face of Physics (Princeton Univ. Press, 1998).

  9. 9

    Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909).

  10. 10

    Allen, P. J. A radiation torque experiment. Am. J. Phys. 34, 1185–1192 (1966).

  11. 11

    Garetz, B. A. Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1981).

  12. 12

    Bretenaker, F. & Le Floch, A. Energy exchanges between a rotating retardation plate and a laser beam. Phys. Rev. Lett. 65, 2316 (1990).

  13. 13

    Dholakia, K. An experiment to demonstrate the angular Doppler effect on laser light. Am. J. Phys. 66, 1007–1010 (1998).

  14. 14

    Courtial, J., Robertson, D. A., Dholakia, K., Allen, L. & Padgett, M. J. Rotational frequency shift of a light beam. Phys. Rev. Lett. 81, 4828–4830 (1998).

  15. 15

    Buhrer, C. F., Baird, D. & Conwell, E. M. Optical frequency shifting by electro-optic effect. Appl. Phys. Lett. 1, 46–49 (1962).

  16. 16

    Zhdanovich, S. et al. Control of molecular rotation with a chiral train of ultrashort pulses. Phys. Rev. Lett. 107, 243004 (2011).

  17. 17

    Bloomquist, C., Zhdanovich, S., Milner, A. & Milner, V. Directional spinning of molecules with sequences of femtosecond pulses. Phys. Rev. A 86, 063413 (2012).

  18. 18

    Floß, J. & Averbukh, I. Sh. Molecular spinning by a chiral train of short laser pulses. Phys. Rev. A 86, 063414 (2012).

  19. 19

    Fleischer, S., Khodorkovsky, Y., Gershnabel, E., Prior, Y. & Averbukh, I. Sh. Molecular alignment induced by ultrashort laser pulses and its impact on molecular motion. Isr. J. Chem. 52, 414–437 (2012).

  20. 20

    Ohshima, Y. & Hasegawa, H. Coherent rotational excitation by intense nonresonant laser fields. Int. Rev. Phys. Chem. 29, 619–663 (2010).

  21. 21

    Stapelfeldt, H. & Seideman, T. Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003).

  22. 22

    Michalski, M., Hüttner, W. & Schimming, H. Experimental demonstration of the rotational frequency shift in a molecular system. Phys. Rev. Lett. 95, 203005 (2005).

  23. 23

    Korn, N. & Zhavoronkov, G. Generation of single intense short optical pulses by ultrafast molecular phase modulation. Phys. Rev. Lett. 88, 203901 (2002).

  24. 24

    Cai, H., Wu, J., Couairon, A. & Zeng, H. Spectral modulation of femtosecond laser pulse induced by molecular alignment revivals. Opt. Lett. 34, 827–829 (2009).

  25. 25

    Baker, S., Walmsley, I. A., Tisch, J. W. G. & Marangos, J. P. Femtosecond to attosecond light pulses from a molecular modulator. Nature Photon. 5, 664–671 (2011).

  26. 26

    Prior, Y. Three-dimensional phase matching in four wave mixing. Appl. Opt. 19, 1741–1743 (1980).

  27. 27

    Kanda, N. et al. The vectorial control of magnetization by light. Nat. Commun. 2, 362 (2011).

Download references

Acknowledgements

The authors thank E. Gershnabel and Y. Khodorkovsky for useful discussions and E. Grinvald for assistance with the notch experiments. Financial support for this research was provided by the Israel Science Foundation (grant no. 601/10) and the Deutsche Forschungsgemeinschaft (grant no. LE 2138/2-1). I.A. is the incumbent of the Patricia Elman Bildner Professorial Chair. Y.P. is the incumbent of the Sherman Professorial Chair. This research is made possible in part by the historic generosity of the Harold Perlman Family. R.J.G. thanks the Weston Foundation for support during a sabbatical visit.

Author information

O.K., U.S., I.Sh.A. and Y.P. designed the experiment. O.K. performed the experiments. R.J.G. helped with the data analysis. Y.P. and I.Sh.A. provided overall guidance to the project. All authors discussed the results and contributed to the manuscript.

Correspondence to Yehiam Prior.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 472 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Korech, O., Steinitz, U., Gordon, R. et al. Observing molecular spinning via the rotational Doppler effect. Nature Photon 7, 711–714 (2013) doi:10.1038/nphoton.2013.189

Download citation

Further reading