Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observing molecular spinning via the rotational Doppler effect

Abstract

When a wave is reflected from a moving object, its frequency is Doppler shifted1. Similarly, when circularly polarized light is scattered from a rotating object, a rotational Doppler frequency shift may be observed2,3, with manifestations ranging from the quantum world (fluorescence spectroscopy, rotational Raman scattering and so on3,4) to satellite-based global positioning systems5. Here, we observe for the first time the Doppler frequency shift phenomenon for a circularly polarized light wave propagating through a gas of synchronously spinning molecules. An ensemble of such spinning molecules was produced by double-pulse laser excitation, with the first pulse aligning the molecules and the second (linearly polarized at a 45° angle) causing a concerted unidirectional rotation of the ‘molecular propellers’6,7. We observed the resulting rotating birefringence of the gas by detecting a Doppler-shifted wave that is circularly polarized in a sense opposite to that of the incident probe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UDR excitation scheme.
Figure 2: Experimental set-up.
Figure 3: Experimentally observed RDS for deuterium molecules.
Figure 4: Experimentally observed RDS for nitrogen.

Similar content being viewed by others

References

  1. Doppler, C. J. Ueber das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abhandlungen der Königl. Böhm. Gesellschaft der Wissenschaften. 2, 465–482 (1842, reissued 1903).

  2. Bialynicki, B. I. & Bialynicka, B. Z. in The Angular Momentum of Light (eds Andrews, D. L. & Babiker, M.) 162–173 (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  3. Garetz, B. A. & Arnold, S. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave retardation plate. Opt. Commun. 31, 1–3 (1979).

    Article  ADS  Google Scholar 

  4. Bialynicki, B. I. & Bialynicka, B. Z. Rotational frequency shift. Phys. Rev. Lett. 78, 2539–2542 (1997).

    Article  ADS  Google Scholar 

  5. Ashby, N. Relativity in the global positioning system. Living Rev. Relativ. 6, 1–42 (2003).

    Article  ADS  Google Scholar 

  6. Fleischer, S., Khodorkovsky, Y., Prior, Y. & Averbukh, I. Sh. Controlling the sense of molecular rotation. New J. Phys. 11, 105039 (2009).

    Article  ADS  Google Scholar 

  7. Kitano, K., Hasegawa, H. & Ohshima, Y. Ultrafast angular momentum orientation by linearly polarized laser fields. Phys. Rev. Lett. 103, 223002 (2009).

    Article  ADS  Google Scholar 

  8. Einstein, A. Zur Elektrodynamik bewegter Körper. Ann. Phys. (Leipz.) 17, 891–921 (1905); reprinted in Stachel, J. (ed.) Einstein's Miraculous Year: Five papers that Changed the Face of Physics (Princeton Univ. Press, 1998).

    Article  ADS  Google Scholar 

  9. Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909).

    Article  ADS  Google Scholar 

  10. Allen, P. J. A radiation torque experiment. Am. J. Phys. 34, 1185–1192 (1966).

    Article  ADS  Google Scholar 

  11. Garetz, B. A. Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1981).

    Article  ADS  Google Scholar 

  12. Bretenaker, F. & Le Floch, A. Energy exchanges between a rotating retardation plate and a laser beam. Phys. Rev. Lett. 65, 2316 (1990).

    Article  ADS  Google Scholar 

  13. Dholakia, K. An experiment to demonstrate the angular Doppler effect on laser light. Am. J. Phys. 66, 1007–1010 (1998).

    Article  ADS  Google Scholar 

  14. Courtial, J., Robertson, D. A., Dholakia, K., Allen, L. & Padgett, M. J. Rotational frequency shift of a light beam. Phys. Rev. Lett. 81, 4828–4830 (1998).

    Article  ADS  Google Scholar 

  15. Buhrer, C. F., Baird, D. & Conwell, E. M. Optical frequency shifting by electro-optic effect. Appl. Phys. Lett. 1, 46–49 (1962).

    Article  ADS  Google Scholar 

  16. Zhdanovich, S. et al. Control of molecular rotation with a chiral train of ultrashort pulses. Phys. Rev. Lett. 107, 243004 (2011).

    Article  ADS  Google Scholar 

  17. Bloomquist, C., Zhdanovich, S., Milner, A. & Milner, V. Directional spinning of molecules with sequences of femtosecond pulses. Phys. Rev. A 86, 063413 (2012).

    Article  ADS  Google Scholar 

  18. Floß, J. & Averbukh, I. Sh. Molecular spinning by a chiral train of short laser pulses. Phys. Rev. A 86, 063414 (2012).

    Article  ADS  Google Scholar 

  19. Fleischer, S., Khodorkovsky, Y., Gershnabel, E., Prior, Y. & Averbukh, I. Sh. Molecular alignment induced by ultrashort laser pulses and its impact on molecular motion. Isr. J. Chem. 52, 414–437 (2012).

    Article  Google Scholar 

  20. Ohshima, Y. & Hasegawa, H. Coherent rotational excitation by intense nonresonant laser fields. Int. Rev. Phys. Chem. 29, 619–663 (2010).

    Article  Google Scholar 

  21. Stapelfeldt, H. & Seideman, T. Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003).

    Article  ADS  Google Scholar 

  22. Michalski, M., Hüttner, W. & Schimming, H. Experimental demonstration of the rotational frequency shift in a molecular system. Phys. Rev. Lett. 95, 203005 (2005).

    Article  ADS  Google Scholar 

  23. Korn, N. & Zhavoronkov, G. Generation of single intense short optical pulses by ultrafast molecular phase modulation. Phys. Rev. Lett. 88, 203901 (2002).

    Article  ADS  Google Scholar 

  24. Cai, H., Wu, J., Couairon, A. & Zeng, H. Spectral modulation of femtosecond laser pulse induced by molecular alignment revivals. Opt. Lett. 34, 827–829 (2009).

    Article  ADS  Google Scholar 

  25. Baker, S., Walmsley, I. A., Tisch, J. W. G. & Marangos, J. P. Femtosecond to attosecond light pulses from a molecular modulator. Nature Photon. 5, 664–671 (2011).

    Article  ADS  Google Scholar 

  26. Prior, Y. Three-dimensional phase matching in four wave mixing. Appl. Opt. 19, 1741–1743 (1980).

    Article  ADS  Google Scholar 

  27. Kanda, N. et al. The vectorial control of magnetization by light. Nat. Commun. 2, 362 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Gershnabel and Y. Khodorkovsky for useful discussions and E. Grinvald for assistance with the notch experiments. Financial support for this research was provided by the Israel Science Foundation (grant no. 601/10) and the Deutsche Forschungsgemeinschaft (grant no. LE 2138/2-1). I.A. is the incumbent of the Patricia Elman Bildner Professorial Chair. Y.P. is the incumbent of the Sherman Professorial Chair. This research is made possible in part by the historic generosity of the Harold Perlman Family. R.J.G. thanks the Weston Foundation for support during a sabbatical visit.

Author information

Authors and Affiliations

Authors

Contributions

O.K., U.S., I.Sh.A. and Y.P. designed the experiment. O.K. performed the experiments. R.J.G. helped with the data analysis. Y.P. and I.Sh.A. provided overall guidance to the project. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Yehiam Prior.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 472 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korech, O., Steinitz, U., Gordon, R. et al. Observing molecular spinning via the rotational Doppler effect. Nature Photon 7, 711–714 (2013). https://doi.org/10.1038/nphoton.2013.189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing