Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental boson sampling

Abstract

Universal quantum computers1 promise a dramatic increase in speed over classical computers, but their full-size realization remains challenging2. However, intermediate quantum computational models3,4,5 have been proposed that are not universal but can solve problems that are believed to be classically hard. Aaronson and Arkhipov6 have shown that interference of single photons in random optical networks can solve the hard problem of sampling the bosonic output distribution. Remarkably, this computation does not require measurement-based interactions7,8 or adaptive feed-forward techniques9. Here, we demonstrate this model of computation using laser-written integrated quantum networks that were designed to implement unitary matrix transformations. We characterize the integrated devices using an in situ reconstruction method and observe three-photon interference10,11,12 that leads to the boson-sampling output distribution. Our results set a benchmark for a type of quantum computer with the potential to outperform a conventional computer through the use of only a few photons and linear-optical elements13.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Non-classical interference.
Figure 2: The optical networks.
Figure 3: Experimental set-up.
Figure 4: Three-photon probabilities.

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  2. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  3. Knill, E. & Laflamme, R. Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672–5675 (1998).

    Article  ADS  Google Scholar 

  4. Aaronson, S. & Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004).

    Article  ADS  Google Scholar 

  5. Jordan, S. P. Permutational quantum computing. Quant. Infor. Comput. 10, 470–497 (2010).

    Google Scholar 

  6. Aaronson, S. & Arkhipov, A. in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing 333–342 (ACM, 2011).

    MATH  Google Scholar 

  7. Gasparoni, S., Pan, J-W., Walther, P., Rudolph, T. & Zeilinger, A. Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004).

    Article  ADS  Google Scholar 

  8. Okamoto, R., O'Brien, J., Hofmann, H. & Takeuchi, S. Realization of a Knill–Laflamme–Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities. Proc. Natl Acad. Sci. USA 108, 10067–10071 (2011).

    Article  ADS  Google Scholar 

  9. Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

    Article  ADS  Google Scholar 

  10. Metcalf, B. J. et al. Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356 (2013).

    Article  ADS  Google Scholar 

  11. Spagnolo, N. et al. Three-photon bosonic coalescence in an integrated tritter. Preprint at http://lanl.arxiv.org/abs/1210.6935 (2012).

  12. Spagnolo, N. et al. Quantum interferometry with three-dimensional geometry. Sci. Rep. 2, 862 (2012).

    Article  Google Scholar 

  13. Rohde, P. P. & Ralph, T. C. Error tolerance of the boson-sampling model for linear optics quantum computing. Phys. Rev. A 85, 022332 (2012).

    Article  ADS  Google Scholar 

  14. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  15. Gao, W. et al. Teleportation-based realization of an optical quantum two-qubit entangling gate. Proc. Natl Acad. Sci. USA 107, 20869–20874 (2010).

    Article  ADS  Google Scholar 

  16. Yoran, N. & Reznik, B. Deterministic linear optics quantum computation with single photon qubits. Phys. Rev. Lett. 91, 037903 (2003).

    Article  ADS  Google Scholar 

  17. Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

    Article  ADS  Google Scholar 

  18. Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    Article  ADS  Google Scholar 

  19. Ralph, T. C., Hayes, A. J. F. & Gilchrist, A. Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005).

    Article  ADS  Google Scholar 

  20. O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  21. Aaronson, S. A linear-optical proof that the permanent is #P-hard. Proc. R. Soc. A 467, 3393–3405 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  22. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  23. Zeilinger, A. General properties of lossless beam splitters in interferometry. Am. J. Phys. 49, 882–883 (1981).

    Article  ADS  Google Scholar 

  24. Arkhipov, A. & Kuperberg, G. The bosonic birthday paradox. Geom. Topol. Monog. 18, 1–7 (2012).

    Article  MathSciNet  Google Scholar 

  25. Itoh, K., Watanabe, W., Nolte, S. & Schaffer, C. Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620–625 (2006).

    Article  Google Scholar 

  26. Marshall, G. et al. Laser written waveguide photonic quantum circuits. Opt. Express 17, 12546–12554 (2009).

    Article  ADS  Google Scholar 

  27. Reck, M. et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

    Article  ADS  Google Scholar 

  28. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  29. Laing, A. & O'Brien, J. L. Super-stable tomography of any linear optical device. Preprint at http://lanl.arxiv.org/abs/1208.2868 (2012).

  30. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    Article  ADS  Google Scholar 

  31. Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    Article  ADS  Google Scholar 

  32. Crespi, A. et al. Experimental boson sampling in arbitrary integrated photonic circuits. Nature Photon. http://dx.doi.org/10.1038/nphoton.2013.112 (in the press); preprint at http://lanl.arxiv.org/abs/1212.2783 (2012).

Download references

Acknowledgements

The authors thank S. Aaronson, Č. Brukner and M. Ringbauer for discussions. The authors acknowledge support from the European Commission under projects ‘Q-ESSENCE—Quantum Interfaces, Sensors, and Communication based on Entanglement’ (no. 248095), ‘QuILMI—Quantum Integrated Light Matter Interface’ (no. 295293) and the ERA-Net CHIST-ERA project ‘QUASAR—Quantum States: Analysis and Realizations’, the German Ministry of Education and Research (Center for Innovation Competence program, grant no. 03Z1HN31), the John Templeton Foundation, the Vienna Center for Quantum Science and Technology (VCQ), the Austrian Nano-initiative ‘Nanostructures of Atomic Physics (NAP-PLATON)’ and the Austrian Science Fund (FWF) under projects ‘SFB-FoQuS—Foundations and Applications of Quantum Science’, ‘PhoQuSi—Photonic Quantum Simulators (Y585-N20)’ and the doctoral programme ‘CoQuS—Complex Quantum Systems’, the Vienna Science and Technology Fund (WWTF; under grant no. ICT12-041), and the Air Force Office of Scientific Research, Air Force Material Command, United States Air Force (grant no. FA8655-11-1-3004).

Author information

Authors and Affiliations

Authors

Contributions

M.T. designed and carried out the experiment, analysed data and waveguide structures, and wrote the manuscript. B.D. provided the theoretical analysis, analysed data and waveguide structures, and wrote the manuscript. R.H. designed and prepared the waveguide structures. S.N. and A.S. supervised the design and preparation of the waveguide structures. P.W. supervised the project, designed the experiment and wrote the manuscript.

Corresponding authors

Correspondence to Max Tillmann or Philip Walther.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2505 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tillmann, M., Dakić, B., Heilmann, R. et al. Experimental boson sampling. Nature Photon 7, 540–544 (2013). https://doi.org/10.1038/nphoton.2013.102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing