Review Article | Published:

Controlling waves in space and time for imaging and focusing in complex media

Nature Photonics volume 6, pages 283292 (2012) | Download Citation

Abstract

In complex media such as white paint and biological tissue, light encounters nanoscale refractive-index inhomogeneities that cause multiple scattering. Such scattering is usually seen as an impediment to focusing and imaging. However, scientists have recently used strongly scattering materials to focus, shape and compress waves by controlling the many degrees of freedom in the incident waves. This was first demonstrated in the acoustic and microwave domains using time reversal, and is now being performed in the optical realm using spatial light modulators to address the many thousands of spatial degrees of freedom of light. This approach is being used to investigate phenomena such as optical super-resolution and the time reversal of light, thus opening many new avenues for imaging and focusing in turbid media.

Scattering of light is usually seen as an impediment to focusing and imaging. This article reviews the recent progress of how strongly scattering media can be used to focus, shape and compress waves by controlling the many degrees of freedom in the incident waves.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Wave Propagation and Scattering in Random Media (Academic, 1978).

  2. 2.

    Waves and Imaging through Complex Media (Kluwer Academic, 1999).

  3. 3.

    Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).

  4. 4.

    , & Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005).

  5. 5.

    et al. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small 7, 169–183 (2011).

  6. 6.

    , & Review of several optical non-destructive analyses of an easel painting: Complementarity and crosschecking of the results. J. Cult. Herit. 12, 335–345 (2011).

  7. 7.

    , & Optical extinction due to intrinsic structural variations of photonic crystals. Phys. Rev. B 72, 153102 (2005).

  8. 8.

    & Holographic imagery through diffusing media. J. Opt. Soc. Am. 56, 523–523 (1966).

  9. 9.

    Looking through walls and around corners. Physica A 168, 49–65 (1990).

  10. 10.

    Statistical Optics (Wiley, 2000).

  11. 11.

    Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic, 1995).

  12. 12.

    Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997).

  13. 13.

    , & Laser Beam Scintillation with Applications Vol. 99 (SPIE, 2001).

  14. 14.

    et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

  15. 15.

    & Deep tissue two-photon microscopy. Nature Meth. 2, 932–940 (2005).

  16. 16.

    , & Location of objects in multiple-scattering media. J. Opt. Soc. Am. A 10, 1209–1218 (1993).

  17. 17.

    Fluorescence molecular imaging. Ann. Rev. Biomed. Eng. 8, 1–33 (2006).

  18. 18.

    et al. Coherent optical adaptive techniques. Appl. Opt. 13, 291–300 (1974).

  19. 19.

    Adaptive Optics for Astronomical Telescopes (Oxford Univ., 1998).

  20. 20.

    in Laser Speckle and Related Phenomena Vol. 9, 255–280 (Springer, 1975).

  21. 21.

    Radiative Transfer (Dover, 1960).

  22. 22.

    & Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692–2695 (1985).

  23. 23.

    & Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696–2699 (1985).

  24. 24.

    , , & Localization of light in a disordered medium. Nature 390, 671–673 (1997).

  25. 25.

    , & Statistical signatures of photon localization. Nature 404, 6780 (2000).

  26. 26.

    , , , & Localization of ultrasound in a three-dimensional elastic network. Nature Phys. 4, 945–948 (2008).

  27. 27.

    , & Fifty years of Anderson localization. Phys. Today 62, 24–29 (August 2009).

  28. 28.

    , , & Observation of anomalous transport of strongly multiple scattered light in thin disordered slabs. Phys. Rev. Lett. 79, 4369–4372 (1997).

  29. 29.

    Time reversed acoustics. Phys. Today 50, 34–40 (March 1997).

  30. 30.

    , & Observation of long-range intensity correlation in the transport of coherent light through a random medium. Phys. Rev. Lett. 64, 2787–2790 (1990).

  31. 31.

    , , & Speed of propagation of classical waves in strongly scattering media. Phys. Rev. Lett. 66, 3132–3135 (1991).

  32. 32.

    & Resonant multiple scattering of light. Phys. Rep. 270, 143–215 (1996).

  33. 33.

    & Transport through modes in random media. Nature 471, 345–348 (2011).

  34. 34.

    , & Transmission and intensity correlations in wave-propagation through random-media. Phys. Rev. B 45, 658–666 (1992).

  35. 35.

    et al. Near-field short range correlation in optical waves transmitted through random media. Phys. Rev. Lett. 90, 250801 (2003).

  36. 36.

    , , & Manipulating spatiotemporal degrees of freedom of waves in random media. Phys. Rev. Lett. 103, 173902 (2009).

  37. 37.

    , & Focusing through random media: Eigenchannel participation number and intensity correlation. Phys. Rev. B 85, 035105 (2012).

  38. 38.

    , , & What spatial light modulators can do for optical microscopy. Laser Photon. Rev. 5, 81–101 (2011).

  39. 39.

    & Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

  40. 40.

    , , & Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

  41. 41.

    Light finds a way through the maze. Physics 1, 20 (2008).

  42. 42.

    On the coexistence of localized and extended electronic states in the metallic phase. Sol. Stat. Commun. 51, 381–384 (1984).

  43. 43.

    Active transmission channels and universal conductance fluctuations. Europhys. Lett. 1, 249–256 (1986).

  44. 44.

    & Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008).

  45. 45.

    , , & Transmission eigenchannels in a disordered medium. Phys. Rev. B 83, 134207 (2011).

  46. 46.

    & Transmission eigenvalues and the bare conductance in the crossover to Anderson localization. Phys. Rev. Lett. 108, 043901 (2012).

  47. 47.

    et al. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

  48. 48.

    & The information age in optics: Measuring the transmission matrix. Physics 3, 22 (2010).

  49. 49.

    & Transmission matrices of random media: Means for spectral polarimetric measurements. Opt. Lett. 35, 2236–2238 (2010).

  50. 50.

    , , , & Image transmission through an opaque material. Nature Commun. 1, 1–5 (2010).

  51. 51.

    & Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing. Opt. Lett. 1, 16–18 (1977).

  52. 52.

    , , & Connection between the wave fronts of the reflected and exciting light in stimulated Mandel'shtam–Brillouin scattering. JETP Lett. 15, 109–112 (1972).

  53. 53.

    & Photorefractive Materials and their Applications I: Materials Vol. 2 (Springer, 2007).

  54. 54.

    , , & Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008).

  55. 55.

    & Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010).

  56. 56.

    , , & Frequency bandwidth of light focused through turbid media. Opt. Lett. 36, 373–375 (2011).

  57. 57.

    Time reversal of ultrasonic fields. I: Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).

  58. 58.

    , & Robust acoustic time reversal with high-order multiple scattering. Phys. Rev. Lett. 75, 4206–4209 (1995).

  59. 59.

    , & Random multiple scattering of ultrasound. I: Coherent and ballistic waves. Phys. Rev. E 64, 036605 (2001).

  60. 60.

    , & Random multiple scattering of ultrasound. II: Is time reversal a self-averaging process? Phys. Rev. E 64, 036606 (2001).

  61. 61.

    et al. Time reversal of electromagnetic waves. Phys. Rev. Lett. 92, 193904 (2004).

  62. 62.

    , , , & Time reversal of wideband microwaves. Appl. Phys. Lett. 88, 154101 (2006).

  63. 63.

    , , , & Optimal focusing by spatio-temporal inverse filter. I: Basic principles. J. Acoust. Soc. Am. 110, 37–47 (2001).

  64. 64.

    , & Real time inverse filter focusing through iterative time reversal. J. Acoust. Soc. Am. 115, 768–775 (2004).

  65. 65.

    , , , & Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

  66. 66.

    , , & Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

  67. 67.

    et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nature Commun. 2, 447 (2011).

  68. 68.

    et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007).

  69. 69.

    Four wave nonlinear optical mixing as real time holography. Opt. Commun. 25, 23–25 (1978).

  70. 70.

    Time reversal of optical pulses by four-wave mixing. Opt. Lett. 5, 300–302 (1980).

  71. 71.

    & Time reversal of light with linear optics and modulators. Phys. Rev. Lett. 93, 173903 (2004).

  72. 72.

    Stopping and time reversal of light in dynamic photonic structures via Bloch oscillations. Phys. Rev. E 75, 026606 (2007).

  73. 73.

    & Time reversal in dynamically tuned zero-gap periodic systems. Phys. Rev. Lett. 106, 193902 (2011).

  74. 74.

    Time reversal and negative refraction. Science 322, 71–73 (2008).

  75. 75.

    et al. Phase conjugation and negative refraction using nonlinear active metamaterials. Phys. Rev. Lett. 105, 123905 (2010).

  76. 76.

    & Scattered light fluorescence microscopy: Imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010).

  77. 77.

    , , & Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988).

  78. 78.

    , & Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988).

  79. 79.

    , , & Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010).

  80. 80.

    , & Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

  81. 81.

    & Multipath-enabled super-resolution for RF and microwave communication using phase-conjugate arrays. Phys. Rev. Lett. 93, 243904 (2004).

  82. 82.

    Controlling the Propagation of Light in Disordered Scattering Media. PhD thesis, Univ. Twente (2008).

  83. 83.

    , & Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

  84. 84.

    , & Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation. Appl. Phys. Lett. 95, 123702 (2009).

  85. 85.

    & One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity. Phys. Rev. Lett. 79, 407–410 (1997).

  86. 86.

    , & Optimal concentration of light in turbid materials. J. Opt. Soc. Am. B 28, 1200–1203 (2011).

  87. 87.

    , , , & Isotropic diffraction-limited focusing using a single objective lens. Phys. Rev. Lett. 105, 203903 (2010).

  88. 88.

    , , & Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

  89. 89.

    & Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer–femtosecond scale by time reversal. Phys. Rev. B 77, 195109 (2008).

  90. 90.

    , , & Resonant metalenses for breaking the diffraction barrier. Phys. Rev. Lett. 104, 203901 (2010).

  91. 91.

    , & Acoustic resonators for far-field control of sound on a subwavelength scale. Phys. Rev. Lett. 107, 064301 (2011).

  92. 92.

    , , & Coherent control of nanoscale light localization in metamaterial: Creating and positioning isolated subwavelength energy hot spots. Phys. Rev. Lett. 106, 085501 (2011).

  93. 93.

    , & Revisiting the wire medium: An ideal resonant metalens. Wave. Random Complex 21, 591–613 (2011).

  94. 94.

    , & Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens. Wave. Random Complex 21, 614–627 (2011).

  95. 95.

    et al. Active spatial control of plasmonic fields. Nature Photon. 5, 360–363 (2011).

  96. 96.

    et al. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011).

  97. 97.

    , & Subwavelength dynamic focusing in plasmonic nanostructures using time reversal. Phys. Rev. B 79, 201103 (2009).

  98. 98.

    & Subdiffraction light focusing on a grating substrate. Phys. Rev. Lett. 101, 013901 (2008).

  99. 99.

    , & Deterministic subwavelength control of light confinement in nanostructures. Phys. Rev. Lett. 105, 216802 (2010).

  100. 100.

    , , , & Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy. Appl. Phys. Lett. 80, 897–899 (2002).

  101. 101.

    , , & Focusing and amplification of electromagnetic waves by time reversal in an leaky reverberation chamber. C. R. Phys. 11, 37–43 (2010).

  102. 102.

    , , & Time reversal kaleidoscope: A smart transducer for three-dimensional ultrasonic imaging. Appl. Phys. Lett. 84, 3879–3881 (2004).

  103. 103.

    , , & Imaging and time reversal in random media. Inverse Probl. 18, 1247–1279 (2002).

  104. 104.

    & Shallow-water acoustics. Phys. Today 57, 55–61 (October 2004).

  105. 105.

    et al. Taking advantage of multiple scattering to communicate with time reversal antennas. Phys. Rev. Lett. 90, 014301 (2003).

  106. 106.

    et al. Time reversal of electromagnetic waves and telecommunication. Radio Sci. 40, RS6S12 (2005).

  107. 107.

    , , , & Communication through a diffusive medium: Coherence and capacity. Science 287, 287–290 (2000).

  108. 108.

    , , , & Sensor based on extending the concept of fidelity to classical waves. Appl. Phys. Lett. 95, 114103 (2009).

  109. 109.

    , & In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

  110. 110.

    , , , & Disordered, strongly scattering porous materials as miniature multipass gas cells. Phys. Rev. Lett. 107, 143901 (2011).

  111. 111.

    et al. Exploiting the time reversal operator for adaptive optics, selective focusing, and scattering pattern analysis. Phys. Rev. Lett. 107, 263901 (2011).

  112. 112.

    , & Microscopy with self-reconstructing beams. Nature Photon. 4, 780–785 (2010).

  113. 113.

    & A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 12, 635–639 (2012).

  114. 114.

    & Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011).

  115. 115.

    , & An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear. Opt. Express 18, 25–30 (2010).

  116. 116.

    et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett. 107, 023902 (2011).

  117. 117.

    A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media. Opt. Express 19, 2989–2995 (2011).

  118. 118.

    , & High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20, 1733–1740 (2012).

  119. 119.

    , , , & Use of coherent control methods through scattering biological tissue to achieve functional imaging. Proc. Natl Acad. Sci. USA 101, 16996–17001 (2004).

  120. 120.

    Ultrafast nanoplasmonics under coherent control. New J. Phys. 10, 025031 (2008).

  121. 121.

    & Dynamics of Anderson localization in open 3D media. Phys. Rev. Lett. 96, 043902 (2006).

  122. 122.

    et al. Spatiotemporal control of nanooptical excitations. Proc. Natl Acad. Sci. USA 107, 5329–5333 (2010).

  123. 123.

    & Negative nonconservative forces: Optical 'tractor beams' for arbitrary objects. Phys. Rev. Lett. 107, 203602 (2011).

  124. 124.

    & Hidden black: Coherent enhancement of absorption in strongly scattering media. Phys. Rev. Lett. 107, 163901 (2011).

  125. 125.

    , , , & Plasmonic nanolithography. Nano Lett. 4, 1085–1088 (2004).

Download references

Acknowledgements

A.P.M. acknowledges financial support from the European Research Council (grant number 279248). The authors thank E. G. van Putten for providing Fig. 4c.

Author information

Affiliations

  1. Complex Photonic Systems (COPS), Department of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

    • Allard P. Mosk
    •  & Ad Lagendijk
  2. FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands

    • Ad Lagendijk
  3. Institut Langevin, ESPCI ParisTech and CNRS, UMR 7587, 10 Rue Vauquelin, 75005 Paris, France

    • Geoffroy Lerosey
    •  & Mathias Fink

Authors

  1. Search for Allard P. Mosk in:

  2. Search for Ad Lagendijk in:

  3. Search for Geoffroy Lerosey in:

  4. Search for Mathias Fink in:

Corresponding author

Correspondence to Allard P. Mosk.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nphoton.2012.88

Further reading