Abstract
High-order nonlinear light–matter interactions in gases enable the generation of X-ray and attosecond light pulses, metrology and spectroscopy1. Optical nonlinearities in solid-state materials are particularly interesting for combining optical and electronic functions for high-bandwidth information processing2. Third-order nonlinear optical processes in silicon have been used to process optical signals with bandwidths greater than 1 GHz (ref. 2). However, fundamental physical processes for a silicon-based optical modulator in the terahertz bandwidth range have not yet been explored. Here, we demonstrate ultrafast phononic modulation of the optical index of silicon by irradiation with intense few-cycle femtosecond pulses. The anisotropic reflectivity modulation by the resonant Raman susceptibility at the fundamental frequency of the longitudinal optical phonon of silicon (15.6 THz) generates a frequency comb up to seventh order. All-optical >100 THz frequency comb generation is realized by harnessing the coherent atomic motion of the silicon crystalline lattice at its highest mechanical frequency.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Coherent control of acoustic phonons in a silica fiber using a multi-GHz optical frequency comb
Communications Physics Open Access 12 April 2021
-
Radio frequency surface plasma oscillations: electrical excitation and detection by Ar/Ag(111)
Scientific Reports Open Access 29 August 2017
-
Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium
Nature Communications Open Access 01 June 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).
Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photon. 4, 535–544 (2010).
Sokolov, A. V., Walker, D. R., Yavuz, D. D., Yin, G. Y. & Harris, S. E. Raman generation by phased and antiphased molecular states. Phys. Rev. Lett. 85, 562–565 (2000).
Suzuki, T., Hirai, M. & Katsuragawa, M. Octave-spanning Raman comb with carrier envelope offset control. Phys. Rev. Lett. 101, 243602 (2008).
Chan, H.-S. et al. Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics. Science 331, 1165–1168 (2011).
Baker, S., Walmsley, I. A., Tisch, J. W. G. & Marangos, J. P. Femtosecond to attosecond light pulses from a molecular modulator. Nature Photon. 5, 664–671 (2011).
Tom, H. W. K., Heinz, T. F. & Shen, Y. R. Second-harmonic reflection from silicon surfaces and its relation to structural symmetry. Phys. Rev. Lett. 51, 1983–1986 (1983).
Faisal, F. H. M., Kaminski, J. Z. & Saczuk, E. Photoemission and high-order harmonic generation from solid surfaces in intense laser fields. Phys. Rev. A 72, 023412 (2005).
Bisio, F., Nývlt, M., Franta, J., Petek, H. & Kirschner, J. Mechanisms of high-order perturbative photoemission from Cu(001). Phys. Rev. Lett. 96, 087601 (2006).
Renucci, J. B., Tyte, R. N. & Cardona, M. Resonant Raman scattering in silicon. Phys. Rev. B 11, 3885–3895 (1975).
Bartels, A., Dekorsy, T. & Kurz, H. Impulsive excitation of phonon-pair combination states by second-order Raman scattering. Phys. Rev. Lett. 84, 2981–2984 (2000).
Brennan C. J. & Nelson, K. A. Direct time-resolved measurement of anharmonic lattice vibrations in ferroelectric crystals. J. Chem. Phys. 107, 9691–9694 (1997).
Kuznetsov, A. V. & Stanton, C. J. Theory of coherent phonon oscillations in semiconductors. Phys. Rev. Lett. 73, 3243–3246 (1994).
Hase, M. & Kitajima, M. Interaction of coherent phonons with defects and elementary excitations. J. Phys. Condens. Matter 22, 073201 (2010).
Ishioka, K., Hase, M., Kitajima, M. & Petek, H. Coherent optical phonons in diamond. Appl. Phys. Lett. 89, 231916 (2006).
Cho, G. C., Kütt, W. & Kurz, H. Subpicosecond time-resolved coherent-phonon oscillations in GaAs. Phys. Rev. Lett. 65, 764–766 (1990).
Dekorsy, T., Cho, G. C. & Kurz, H. Coherent phonons in condensed media, in Light Scattering in Solids VIII, 76, Springer Topics in Applied Physics (Springer, 2000).
Sabbah, A. J. & Riffe, D. M. Femtosecond pump–probe reflectivity study of silicon carrier dynamics. Phys. Rev. B 66, 165217 (2002).
Hase, M., Kitajima, M., Constantinescu, A. M. & Petek, H. The birth of a quasiparticle observed in time–frequency space. Nature 426, 51–54 (2003).
Zeiger, H. J. et al. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768–778 (1992).
Ishioka, K. et al. Ultrafast electron–phonon decoupling in graphite. Phys. Rev. B 77, 121402(R) (2008).
Melnikov, A. et al. Coherent optical phonons and parametrically coupled magnons induced by femtosecond laser excitation of the Gd(0001) surface. Phys. Rev. Lett. 91, 227403 (2003).
Dhar, L., Rogers, J. A. & Nelson, K. A. Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157–193 (1994).
Yan, Y.-X., Gamble, E. B. & Nelson, K. A. Impulsive stimulated scattering: general importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J. Chem. Phys. 83, 5391–5399 (1985).
Shank, C. V., Yen, R. & Hirlimann, C. Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon. Phys. Rev. Lett. 50, 454–457 (1983).
Pötz, W. & Vogl, P. Theory of optical–phonon deformation potentials in tetrahedral semiconductors. Phys. Rev. B 24, 2025–2037 (1981).
Kudryashov, S. I., Kandyla, M., Roeser, C. A. D. & Mazur, E. Intraband and interband optical deformation potentials in femtosecond-laser-excited α-Te. Phys. Rev. B 75, 085207 (2007).
Constantinescu, A. M. Carrier–LO Phonon Interactions in Si(001). PhD thesis, Univ. Pittsburgh (2010).
Riffe, D. M. & Sabbah, A. J. Coherent excitation of the optic phonon in Si: transiently stimulated Raman scattering with a finite-lifetime electronic excitation. Phys. Rev. B 76, 085207 (2007).
Aspens, D. E. & Studna, A. A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009 (1983).
Acknowledgements
The authors acknowledge M. Kitajima for stimulating discussions. This work was supported in part by the National Science Foundation (grant no. CHE-0650756).
Author information
Authors and Affiliations
Contributions
M.H. and A.M.C. performed the experiments and analysed data. M.K. constructed the simulation model and M.H. carried out the model simulation. M.H., M.K. and H.P. discussed the results. M.H. and H.P. co-wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Hase, M., Katsuragawa, M., Constantinescu, A. et al. Frequency comb generation at terahertz frequencies by coherent phonon excitation in silicon. Nature Photon 6, 243–247 (2012). https://doi.org/10.1038/nphoton.2012.35
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2012.35
This article is cited by
-
Coherent control of acoustic phonons in a silica fiber using a multi-GHz optical frequency comb
Communications Physics (2021)
-
Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium
Nature Communications (2017)
-
Radio frequency surface plasma oscillations: electrical excitation and detection by Ar/Ag(111)
Scientific Reports (2017)
-
Measurement of multimode coherent phonons in nanometric spaces in a homojunction-structured silicon light emitting diode
Applied Physics A (2014)