Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biological measurement beyond the quantum limit

Abstract

Dynamic biological measurements require low light levels to avoid damaging the specimen. With this constraint on optical power, quantum noise fundamentally limits the measurement sensitivity. This limit can only be surpassed by extracting more information per photon by using quantum correlations. Here, we experimentally demonstrate that the quantum shot noise limit can be overcome for measurements of living systems. Quantum-correlated light with amplitude noise squeezed 75% below the vacuum level is used to perform microrheology experiments within Saccharomyces cerevisiae yeast cells. Naturally occurring lipid granules are tracked in real time as they diffuse through the cytoplasm, and the quantum noise limit is surpassed by 42%. The laser-based microparticle tracking technique used is compatible with non-classical light and is immune to low-frequency noise, leading the way to achieving a broad range of quantum-enhanced measurements in biology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental layout.
Figure 2: Schematic of the particle tracking method.
Figure 3: Particle tracking spectra.
Figure 4: MSD data.

References

  1. Ashkin, A. & Dziedzic, J. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987).

    Article  ADS  Google Scholar 

  2. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5, 491–505 (2008).

    Article  Google Scholar 

  3. Greenleaf, W. J. & Block, S. M. Single-molecule, motion-based DNA sequencing using RNA polymerase. Science 5, 801 (2006).

    Article  Google Scholar 

  4. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 313, 113–119 (1994).

    Article  ADS  Google Scholar 

  5. Yamada, S., Wirtz, D. & Kuo, S. C. Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 368, 1736–1747 (2000).

    Article  Google Scholar 

  6. Senning, E. N. & Marcus, A. H. Actin polymerization driven mitochondrial transport in mating S. cerevisiae. Proc. Natl Acad. Sci. USA 78, 721–725 (2010).

    Article  ADS  Google Scholar 

  7. Tolić-Nørrelykke, I. M., Munteanu, E-L., Thon, G., Oddershede, L. & Berg-Sørensen, K. Anomalous diffusion in living yeast cells. Phys. Rev. Lett. 93, 078102 (2004).

    Article  ADS  Google Scholar 

  8. Selhuber-Unkel, C., Yde, P., Berg-Sørensen, K. & Oddershede, L. B. Variety in intracellular diffusion during the cell cycle. Phys. Biol. 6, 025015 (2009).

    Article  ADS  Google Scholar 

  9. McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotech. 6, 358–363 (2011).

    Article  ADS  Google Scholar 

  10. Crespi, A. et al. Measuring protein concentration with entangled photons. Appl. Phys. Lett. 100, 233704 (2012).

    Article  ADS  Google Scholar 

  11. Nasr, M. B. et al. Quantum optical coherence tomography of a biological sample. Opt. Commun. 282, 1154–1159 (2009).

    Article  ADS  Google Scholar 

  12. Tay, J. W., Hsu, M. T. L. & Bowen, W. P. Quantum limited particle sensing in optical tweezers. Phys. Rev. A 80, 063806 (2009).

    Article  ADS  Google Scholar 

  13. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  ADS  Google Scholar 

  14. Demkowicz-Dobrzański, R., Kołodyński, J. & Guţǎ, M. The elusive Heisenberg limit in quantum-enhanced metrology. Nature Commun. 3, 1063 (2012).

    Article  ADS  Google Scholar 

  15. Abadie, J. et al. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys. 7, 962–965 (2011).

    Article  ADS  Google Scholar 

  16. Wolfgramm, F. et al. Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010).

    Article  ADS  Google Scholar 

  17. Nagata, T., Okamoto, R., O'Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).

    Article  ADS  Google Scholar 

  18. Kolobov, M. I. & Fabre, C. Quantum limits on optical resolution. Phys. Rev. Lett. 85, 3789–3792 (2000).

    Article  ADS  Google Scholar 

  19. McKenzie, K. et al. Squeezing in the audio gravitational-wave detection band. Phys. Rev. Lett. 93, 161105 (2004).

    Article  ADS  Google Scholar 

  20. Yurke, B., Grangier, P. & Slusher, R. E. Squeezed-state enhanced two-frequency interferometry. J. Opt. Soc. Am. B 4, 1677–1682 (1987).

    Article  ADS  Google Scholar 

  21. Franosch, T. et al. Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011).

    Article  ADS  Google Scholar 

  22. Treps, N. et al. A quantum laser pointer. Science 301, 940–943 (2003).

    Article  ADS  Google Scholar 

  23. Peterman, E. J., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

    Article  ADS  Google Scholar 

  24. Mason, T. G. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol. Acta 39, 371–378 (2000).

    Article  Google Scholar 

  25. Taylor, M. A., Knittel, J., Hsu, M. T. L., Bachor, H-A. & Bowen, W. P. Sagnac interferometer-enhanced particle tracking in optical tweezers. J. Opt. 13, 044014 (2011).

    Article  ADS  Google Scholar 

  26. Neuman, K. C., Chadd, E. H., Liou, G. F., Bergman, K. & Block, S. M. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999).

    Article  Google Scholar 

  27. Chavez, I., Huang, R., Henderson, K., Florin, E-L. & Raizen, M. G. Development of a fast position-sensitive laser beam detector. Rev. Sci. Instrum. 79, 105104 (2008).

    Article  ADS  Google Scholar 

  28. Taylor, M. A., Knittel, J. & Bowen, W. P. Fundamental constraints on particle tracking with optical tweezers. Preprint at http://arxiv.org/abs/1208.0657 (2012).

  29. Buchanan, M., Atakhorrami, M., Palierne, J. F., MacKintosh, F. C. & Schmidt, C. F. High-frequency microrheology of wormlike micelles. Phys. Rev. E 72, 011504 (2005).

    Article  ADS  Google Scholar 

  30. Huang, R. et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nature Phys. 7, 576–580 (2011).

    Article  ADS  Google Scholar 

  31. Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

    Article  ADS  Google Scholar 

  32. Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noisequantum imaging. Nature Photon. 4, 227–230 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Ping Koy Lam for facilitating the squeezing experiments, Bill Williams and Nicolas Treps for useful discussions about microrheology and spatial squeezing respectively, and Magnus Hsu for input on the experiments. This work was supported by the Australian Research Council Discovery Project (contract no. DP0985078). B.H. acknowledges financial support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.A.T., W.P.B. and H-A.B. designed the experiment. M.A.T., J.K., J.J., B.H. and V.D. constructed the apparatus. M.A.T., J.J. and V.D. performed the experiments. M.A.T. analysed the data. M.A.T. and W.P.B. wrote the paper, with assistance from all co-authors.

Corresponding author

Correspondence to Warwick P. Bowen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 697 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taylor, M., Janousek, J., Daria, V. et al. Biological measurement beyond the quantum limit. Nature Photon 7, 229–233 (2013). https://doi.org/10.1038/nphoton.2012.346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing