Abstract
The idea of using optical beams to attract objects has long been a dream of scientists and the public alike. Over the years, a number of proposals have attempted to bring this concept to life. Here we review the most recent progress in this emerging field, including new concepts for manipulating small objects using optically induced 'negative forces', achieved by tailoring the properties of the electromagnetic field, the environment or the particles themselves.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces
Nature Communications Open Access 15 May 2020
-
Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation
Light: Science & Applications Open Access 16 April 2020
-
Opto-thermoelectric pulling of light-absorbing particles
Light: Science & Applications Open Access 06 March 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Maxwell, J. C. A Treatise on Electricity and Magnetism 1st edn, 391 (Oxford Univ. Press, 1873).
Lebedev, P. Untersuchungen über die druckkräfte des lichtes. Ann. Phys. 6, 433–458 (1901).
Nichols, E. F. & Hull, G. F. A preliminary communication on the pressure of heat and light radiation. Phys. Rev. 13, 307–320 (1901).
Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).
Kantrowitz, A. Propulsion to orbit by ground-based lasers. Astronaut. Aeronaut. 10, 74–76 (1972).
Sinko, J. E. Laser ablation propulsion tractor beam system. J. Propul. Power 26, 189–191 (2010).
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).
Block, S. M. Making light work with optical tweezers. Nature 360, 493–495 (1992).
A light touch. Nature Photon 5, 315 (2011).
Grier, D. A revolution in optical manipulation. Nature 424, 21–27 (2003).
Cizmár, T., Kollárová, V., Bouchal, Z. & Zemánek, P. Sub-micron particle organization by self-imaging of non-diffracting beams. New J. Phys. 8, 43 (2006).
Ruffner, D. B. & Grier, D. G. Optical conveyors: a class of active tractor beams. Phys. Rev. Lett. 109, 163903 (2012).
Maher-McWilliams, C., Douglas, P. & Barker, P. F. Laser-driven acceleration of neutral particles. Nature Photon. 6, 386–390 (2012).
Veselago, V. G. Electrodynamics of substances with simultaneously negative values of electric and magnetic permeabilities. Sov. Phys. Usp. 10, 509–514 (1968).
Kemp, B. A., Kong, J. A. & Grzegorczyk, T. M. Reversal of wave momentum in isotropic left-handed media. Phys. Rev. A 75, 053810 (2007).
Yannopapas, V. & Galiatsatos, P. G. Electromagnetic forces in negative-refractive-index metamaterials: a first-principles study. Phys. Rev. A 77, 043819 (2008).
Veselago, V. G. Energy, linear momentum and mass transfer by an electromagnetic wave in a negative-refraction medium. Phys. Usp. 52, 649–654 (2009).
Chau, K. J. & Lezec, H. C. Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab. Opt. Express 20, 10138–10162 (2012).
Mansuripur, M. & Zakharian, A. R. Radiation pressure and photon momentum in negative-index media. Proc. SPIE 8455, 845511 (2012).
Salandrino A. & Christodoulides, D. N. Reverse optical forces in negative index dielectric waveguide arrays. Opt. Lett. 36, 3103–3105 (2011).
Nemirovsky, J., Rechtsman, M. C. & Segev, M. Negative radiation pressure and negative effective refractive index via dielectric birefringence. Opt. Express 20, 8907–8914 (2012).
Iida, T. & Ishihara, H. Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: from microscopic to macroscopic descriptions. Phys. Rev. B 77, 245319 (2008).
Gómez-Medina, R. & Sáenz, J. J. Unusually strong optical interactions between particles in quasi-one-dimensional geometries. Phys. Rev. Lett. 93, 243602 (2004).
Shalin, A. S. & Sukhov, S. V. Plasmonic nanostructures as accelerators for nanoparticles: optical nanocannon. Plasmonics http://dx.doi.org/10.1007/s11468-012-9447-0 (2012).
Gel'mukhanov, F. Kh. 'Negative' optical pressure. Sov. J. Quant. Electron. 11, 1138–1141 (1981).
Werij, H. G. C., Woerdman, J. P., Beenakker, J. J. M. & Kuščer, I. Demonstration of a semipermeable optical piston. Phys. Rev. Lett. 52, 2237–2240 (1984).
Monjushiro, H., Takeuchi, K. & Watarai, H. Anomalous laser photophoretic behavior of photo-absorbing organic droplets in water. Chem. Lett. 31, 788–789 (2002).
Desyatnikov, A. S., Shvedov, V. G., Rode, A. V., Krolikowski, W. & Kivshar, Y. S. Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment. Opt. Express 17, 8201–8211 (2009).
Shvedov, V. G. et. al. Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010).
Jannasch, A., Demirörs, F., van Oostrum, P., van Blaaderen, A. & Schäffer, E. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nature Photon. 6, 469–473 (2012).
Nieto-Vesperinas, M., Gómez-Medina, R. & Sáenz, J. J. Angle-suppressed scattering and optical forces on submicrometer dielectric particles. J. Opt. Soc. Am. A 28, 54–60 (2011).
Novitsky, A., Qiu, C.-W. & Lavrinenko, A. Material-independent and size-independent tractor beams for dipole objects. Phys. Rev. Lett. 109, 023902 (2012).
Geffrin, J. M. et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nature Commun. 3, 1171–1178 (2012).
Mizrahi, A. & Fainman, Y. Negative radiation pressure on gain medium structures. Opt. Lett. 35, 3405–3407 (2010).
Webb, K. J. & Shivanand, K. Negative electromagnetic plane-wave force in gain media. Phys. Rev. E 84, 057602 (2011).
Kudo, T. & Ishihara, H. Proposed nonlinear resonance laser technique for manipulating nanoparticles. Phys. Rev. Lett. 109, 087402 (2012).
Swartzlander, G. A., Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nature Photon. 5, 48–51 (2011).
Sukhov, S. & Dogariu, A. On the concept of 'tractor beams'. Opt. Lett. 35, 3847–3849 (2010).
Lee, S.-H., Roichman, Y. & Grier, D. G. Optical solenoid beams. Opt. Express 18, 6988–6993 (2010).
Chen, J., Ng, J., Lin, Z. & Chan, C. T. Optical pulling force. Nature Photon. 5, 531–534 (2011).
Novitsky, A., Qiu, C.-W. & Wang, H. Single gradientless light beam drags particles as tractor beams. Phys. Rev. Lett. 107, 203601 (2011).
Sáenz, J. J. Optical forces: laser tractor beams. Nature Photon. 5, 514–515 (2011).
Sukhov, S. & Dogariu, A. Negative nonconservative forces: optical 'tractor beams' for arbitrary objects. Phys. Rev. Lett. 107, 203602 (2011).
Gómez-Medina, R. et al. Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering anisotropy. Photon. Nanostruct. 10, 345–352 (2012).
Hänggi, P. & Marchesoni, F. Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009).
Douglass, K. M., Sukhov, S. & Dogariu, A. Superdiffusion in optically controlled active media. Nature Photon. http://dx.doi.org/10.1038/nphoton.2012.278 (2012).
Acknowledgements
The authors thank E. Sahagún for help in preparing figures. A.D. and S.S. acknowledge partial support from the Air Force Office of Scientific Research and the National Science Foundation. J.J.S. acknowledges support from the Spanish Ministerio de Ciencia e Innovación through Consolider NanoLight (CSD2007-00046) and from the Comunidad de Madrid Microseres-CM (S2009/TIC-1476).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dogariu, A., Sukhov, S. & Sáenz, J. Optically induced 'negative forces'. Nature Photon 7, 24–27 (2013). https://doi.org/10.1038/nphoton.2012.315
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2012.315
This article is cited by
-
Opto-thermoelectric pulling of light-absorbing particles
Light: Science & Applications (2020)
-
Ultrafast photomechanical transduction through thermophoretic implosion
Nature Communications (2020)
-
Comparing acoustic and optical forces for biomedical research
Nature Reviews Physics (2020)
-
Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces
Nature Communications (2020)
-
Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation
Light: Science & Applications (2020)