Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Superdiffusion in optically controlled active media

Subjects

Abstract

Active media are complex systems driven by both thermal fluctuations and additional energy sources1,2 and are encountered in a variety of phenomena including mobile bacteria3,4, protein diffusion5 or turbulent flows6,7. However, studying the non-equilibrium dynamics of active media is often difficult because of their size and complexity8. Here, we demonstrate that an active medium can be realized and controlled optically through dynamic coupling between multiply scattered light and colloidal particles. As a result of a strong light–matter interaction, the particles undergo diffusion upon a spatiotemporal random potential that leads to an apparent superdiffusion over timescales controlled by, among other things, both the input power and particle size. This model could serve as a convenient tool for exploring the intricacies of non-equilibrium thermodynamics of soft matter while also offering new possibilities for the coherent control of strongly coupled, complex systems9.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An optically controlled active medium consisting of dielectric spheres strongly coupled to a volume speckle field.
Figure 2: The PSD of the intensity fluctuations contains information about the motions of the particles.
Figure 3: Simulations of particles in a dynamic volume speckle field reveal superdiffusive behaviour.

References

  1. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    Article  ADS  Google Scholar 

  2. Hänggi, P. & Marchesoni, F. Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009).

    Article  ADS  Google Scholar 

  3. Angelani, L., Maggi, C., Bernardini, M. L., Rizzo, A. & Di Leonardo, R. Effective interactions between colloidal particles suspended in a bath of swimming cells. Phys. Rev. Lett. 107, 138302 (2011).

    Article  ADS  Google Scholar 

  4. Baskaran, A. & Marchetti, M. C. Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl Acad. Sci. USA 106, 15567–15572 (2009).

    Article  ADS  Google Scholar 

  5. Gambin, Y. et al. Lateral mobility of proteins in liquid membranes revisited. Proc. Natl Acad. Sci. USA 103, 2098–2102 (2006).

    Article  ADS  Google Scholar 

  6. Shraiman, B. I. & Siggia, E. D. Scalar turbulence. Nature 405, 639–646 (2000).

    Article  ADS  Google Scholar 

  7. Eyink, G. L. & Sreenivasan, K. R. Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78, 87–135 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  8. Cladis, P. E. & Palffy-Muhoray, P. Spatio-temporal Patterns in Nonequilibrium Complex Systems (Westview Press, 1995).

  9. Klimontovich, Y. L. & Klimontovich, Y. L. Kinetic theory of active media. Statist. Theory Open Syst. 67, 361–386 (1995).

    Article  Google Scholar 

  10. Herlach, D. M., Klassen, I., Wette, P. & Holland-Moritz, D. Colloids as model systems for metals and alloys: a case study of crystallization. J. Phys. Condens. Matter 22, 153101 (2010).

    Article  ADS  Google Scholar 

  11. Yashin, V. V., Kuksenok, O., Dayal, P. & Balazs, A. C. Mechano-chemical oscillations and waves in reactive gels. Rep. Prog. Phys. 75, 066601 (2012).

    Article  ADS  Google Scholar 

  12. Golestanian, R. Collective behavior of thermally active colloids. Phys. Rev. Lett. 108, 038303 (2012).

    Article  ADS  Google Scholar 

  13. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    Article  ADS  Google Scholar 

  14. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  15. Skipetrov, S., Chesnokov, S., Zakharov, S., Kazaryan, M. & Shcheglov, V. Ponderomotive action of light in the problem of multiple scattering of light in a randomly inhomogeneous medium. JETP Lett. 67, 635–639 (1998).

    Article  ADS  Google Scholar 

  16. Crocker, J. C. Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres. J. Chem. Phys. 106, 2837–2840 (1997).

    Article  ADS  Google Scholar 

  17. Sohn, I. S., Rajagopalan, R. & Dogariu, A. Spatially resolved microrheology through a liquid/liquid interface. J. Colloid Interface Sci. 269, 503–513 (2004).

    Article  ADS  Google Scholar 

  18. Kamen, E. W. & Heck, B. S. in Fundamentals of Signals and Systems Using the Web and MATLAB Ch. 3 (Pearson Prentice Hall, 2007).

  19. Albaladejo, S., Marqués, M. I., Laroche, M. & Sáenz, J. J. Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett. 102, 113602 (2009).

    Article  ADS  Google Scholar 

  20. Jiang, H-R., Yoshinaga, N. & Sano, M. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105, 268302 (2010).

    Article  ADS  Google Scholar 

  21. Bruno, L., Levi, V., Brunstein, M. & Despósito, M. A. Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors. Phys. Rev. E 80, 011912 (2009).

    Article  ADS  Google Scholar 

  22. Despósito, M. A. Superdiffusion induced by a long-correlated external random force. Phys. Rev. E 84, 061114 (2011).

    Article  ADS  Google Scholar 

  23. Démery, V. & Dean, D. S. Perturbative path–integral study of active- and passive-tracer diffusion in fluctuating fields. Phys. Rev. E 84, 011148 (2011).

    Article  ADS  Google Scholar 

  24. Hanes, R. D. L., Dalle-Ferrier, C., Schmiedeberg, M., Jenkins, M. C. & Egelhaaf, S. U. Colloids in one dimensional random energy landscapes. Soft Matter 8, 2714–2723 (2012).

    Article  ADS  Google Scholar 

  25. Romero, A. H. & Sancho, J. M. Brownian motion in short range random potentials. Phys. Rev. E 58, 2833–2837 (1998).

    Article  ADS  Google Scholar 

  26. Pottier, N. Aging properties of an anomalously diffusing particule. Physica A 317, 371–382 (2003).

    Article  ADS  Google Scholar 

  27. Jendrzejewski, F. et al. Three-dimensional localization of ultracold atoms in an optical disordered potential. Nature Phys. 8, 398–403 (2012).

    Article  ADS  Google Scholar 

  28. García-Ojalvo, J. & Sancho, J. M. in Noise in Spatially Extended Systems Ch. 2 (Springer, 1999).

  29. Sukhov, S. & Dogariu, A. Negative nonconservative forces: optical ‘tractor beams’ for arbitrary objects. Phys. Rev. Lett. 107, 203602 (2011).

    Article  ADS  Google Scholar 

  30. Bohren, C. F. & Huffman, D. R. in Absorption and Scattering of Light by Small Particles Ch. 3 (Wiley-VCH, 1998).

Download references

Acknowledgements

The authors thank the Stokes Advanced Research Computing Center at the University of Central Florida for access to the high-performance computing cluster. This work was partially supported by the AFOSR and NSF.

Author information

Authors and Affiliations

Authors

Contributions

K.M.D. performed the experiments and numerical simulations. S.S. performed the thermal analysis in the Supplementary Information, as well as the analytical modelling. S.S. assisted with numerical simulations. A.D. conceived the work. All three authors contributed equally to the data analysis and to writing the manuscript.

Corresponding author

Correspondence to Aristide Dogariu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1082 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Douglass, K., Sukhov, S. & Dogariu, A. Superdiffusion in optically controlled active media. Nature Photon 6, 834–837 (2012). https://doi.org/10.1038/nphoton.2012.278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing