Abstract

Free-electron lasers (FELs) are promising devices for generating light with laser-like properties in the extreme ultraviolet and X-ray spectral regions. Recently, FELs based on the self-amplified spontaneous emission (SASE) mechanism have allowed major breakthroughs in diffraction and spectroscopy applications, despite the relatively large shot-to-shot intensity and photon-energy fluctuations and the limited longitudinal coherence inherent in the SASE mechanism. Here, we report results on the initial performance of the FERMI seeded FEL, based on the high-gain harmonic generation configuration, in which an external laser is used to initiate the emission process. Emission from the FERMI FEL-1 source occurs in the form of pulses carrying energy of several tens of microjoules per pulse and tunable throughout the 65 to 20 nm wavelength range, with unprecedented shot-to-shot wavelength stability, low-intensity fluctuations, close to transform-limited bandwidth, transverse and longitudinal coherence and full control of polarization.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

  2. 2.

    & Elements of Modern X-ray Physics (Wiley, 2001).

  3. 3.

    Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).

  4. 4.

    , , , & Observation of stimulated emission of radiation by relativistic electrons in a spatially transverse magnetic field. Phys. Rev. Lett. 36, 717–720 (1976).

  5. 5.

    et al. First operation of a free electron laser. Phys. Rev. Lett. 38, 892–894 (1977).

  6. 6.

    & Generation of coherent radiation by a relativistic electron beam in an undulator. Part. Accel. 10, 207–216 (1980).

  7. 7.

    , & Collective instabilities and high gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).

  8. 8.

    , & The Physics of Free Electron Lasers (Springer, 2000).

  9. 9.

    et al. Measurements of gain larger than 105 at 12 µm in a self amplified spontaneous emission free electron laser. Phys. Rev. Lett. 81, 4867–4871 (1998).

  10. 10.

    et al. Exponential gain and saturation of a self amplified spontaneous emission free electron laser. Science 292, 2037–2041 (2001).

  11. 11.

    et al. Generation of GW radiation pulses from VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett. 88, 104802 (2002).

  12. 12.

    et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon. 1, 336–342 (2007).

  13. 13.

    et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

  14. 14.

    et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nature Photon. 6, 540–544 (2012).

  15. 15.

    Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44, 5178–5193 (1991).

  16. 16.

    et al. High-gain harmonic-generation free-electron laser. Science 289, 932–934 (2000).

  17. 17.

    et al. Demonstration of the echo-enabled harmonic generation technique for short-wavelength seeded free electron lasers. Phys. Rev. Lett. 105, 114801 (2010).

  18. 18.

    et al. First lasing of an echo-enabled harmonic generation free-electron laser. Nature Photon. 6, 360–363 (2012).

  19. 19.

    et al. Vacuum ultraviolet circularly polarized coherent femtosecond pulses from laser seeded relativistic electrons. Phys. Rev. ST Accel. Beams 14, 030706 (2011).

  20. 20.

    et al. High-gain harmonic-generation free-electron laser seeded by harmonics generated in gas. Phys. Rev. Lett. 107, 224801 (2011).

  21. 21.

    et al. Generation of ultrashort coherent vacuum ultraviolet pulses using electron storage rings: a new bright light source for experiments. Phys. Rev. Lett. 101, 053902 (2008).

  22. 22.

    et al. Coherent harmonic generation experiments on UVSOR-II storage ring. Nucl. Instrum. Methods A 593, 1–5 (2008).

  23. 23.

    FERMI@Elettra FEL Conceptual Design Report (Sincrotrone Trieste, 2007).

  24. 24.

    et al. Physics of the high-gain FEL and superradiance. Rivista del Nuovo Cimento 13(9), 1–69 (1990).

  25. 25.

    Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers. Phys. Rev. Lett. 57, 1871–1874 (1986).

  26. 26.

    , & Statistical properties of radiation from VUV and X-ray free electron laser. Opt. Commun. 148, 383–403 (1998).

  27. 27.

    et al. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system and applications. New J. Phys. 12, 075002 (2010).

  28. 28.

    Analyses for a planar variably-polarizing undulator. Nucl. Instrum. Methods A 347, 83–86 (1994).

  29. 29.

    , & Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier. Nucl. Instrum. Methods A 296, 787–790 (1990).

  30. 30.

    , & Nonlinear harmonic generation in free-electron lasers. IEEE J. Quantum Electron. 36, 275–281 (2000).

  31. 31.

    & Three-dimensional analysis of harmonic generation in high-gain free-electron lasers. Phys. Rev. E 62, 7295–7308 (2000).

  32. 32.

    et al. Coherent light with tunable polarization from single-pass free-electron lasers. Phys. Rev. Lett. 107, 084801 (2011).

  33. 33.

    et al. Magnetic characterization of the FEL-1 undulators for the FERMI@ELETTRA free-electron laser. Proc. FEL 2010, 664–666 (2010).

  34. 34.

    et al. The copper free FERMI timing system: implementation and results. Proc. Beam Instrumentation Workshop 398–402 (2010).

  35. 35.

    , & The ‘fresh-bunch’ technique in FELS. Nucl. Instrum. Methods A 318, 726–729 (1992).

  36. 36.

    & Soft-X-ray coherent radiation using a single-cascade free-electron laser. Phys. Rev. Lett. 99, 014801 (2007).

  37. 37.

    A user manual for GINGER and its post-processor XPLOTGIN, LBNL Technical Report LBNL-49625 (2002).

  38. 38.

    Exact and variational solutions of 3D eigenmodes in high gain FELs. Nucl. Instrum. Methods A 445, 59–66 (2000).

  39. 39.

    , & Coherence properties of the radiation from X-ray free electron laser. Opt. Commun. 281, 1179–1188 (2008).

  40. 40.

    et al. Transverse-coherence properties of the free-electron-laser FLASH at DESY. Phys. Rev. Lett. 101, 254801 (2008).

  41. 41.

    et al. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nature Phys. 4, 296–300 (2008).

  42. 42.

    , & Tunability of a seeded free-electron laser through frequency pulling. Eur. Phys. Lett. 89, 064005 (2010).

  43. 43.

    , , & Laser phase errors in seeded free electron lasers. Phys. Rev. ST Accel. Beams 15, 030702 (2012).

  44. 44.

    et al. FEL spectral measurements at LCLS. Proc. FEL 2011, 461–464 (2011).

  45. 45.

    Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801 (2009).

  46. 46.

    , , , & Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL. Opt. Commun. 140, 341–352 (1997).

  47. 47.

    , & A novel self-seeding scheme for hard X-ray FELs. J. Mod. Opt. 58, 1391–1403 (2011).

  48. 48.

    et al. Demonstration of self-seeding in a hard X-ray free-electron laser. Nature Photon. 6, (2012).

  49. 49.

    et al. PADReS: the photon analysis delivery and reduction system at the FERMI@Elettra FEL user facility. Rev. Sci. Instrum. 80, 113110 (2009).

Download references

Acknowledgements

The authors thank the many people at Sincrotrone Trieste who contributed to this project, including the accelerator operations group, the electron and systems controls groups, the undulator systems design, X-ray diagnostics/optics, RF engineering, all engineering support teams, procurement and administration. Thanks are also extended to colleagues at Kyma S.r.l. for the timely construction and delivery of the undulators used in the present study. The resources that made possible the construction of FERMI were obtained and managed by G. Comelli, A. Franciosi and C. Rizzuto. The authors acknowledge support from the Italian Government, the Regional Government of Friuli-Venezia Giulia, the European Commission, the European Research Council and the European Investment Bank.

Author information

Affiliations

  1. Sincrotrone Trieste S.C.p.A. di interesse nazionale, Strada Statale 14-km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy

    • E. Allaria
    • , R. Appio
    • , L. Badano
    • , W.A. Barletta
    • , S. Bassanese
    • , S.G. Biedron
    • , A. Borga
    • , E. Busetto
    • , D. Castronovo
    • , P. Cinquegrana
    • , S. Cleva
    • , D. Cocco
    • , M. Cornacchia
    • , P. Craievich
    • , I. Cudin
    • , G. D'Auria
    • , M.B. Danailov
    • , R. De Monte
    • , G. De Ninno
    • , P. Delgiusto
    • , A. Demidovich
    • , S. Di Mitri
    • , B. Diviacco
    • , A. Fabris
    • , R. Fabris
    • , W. Fawley
    • , M. Ferianis
    • , E. Ferrari
    • , S. Ferry
    • , L. Froehlich
    • , P. Furlan
    • , G. Gaio
    • , F. Gelmetti
    • , L. Giannessi
    • , M. Giannini
    • , R. Gobessi
    • , R. Ivanov
    • , E. Karantzoulis
    • , M. Lonza
    • , A. Lutman
    • , B. Mahieu
    • , M. Milloch
    • , S.V. Milton
    • , M. Musardo
    • , I. Nikolov
    • , S. Noe
    • , F. Parmigiani
    • , G. Penco
    • , M. Petronio
    • , L. Pivetta
    • , M. Predonzani
    • , F. Rossi
    • , L. Rumiz
    • , A. Salom
    • , C. Scafuri
    • , C. Serpico
    • , P. Sigalotti
    • , S. Spampinati
    • , C. Spezzani
    • , M. Svandrlik
    • , C. Svetina
    • , S. Tazzari
    • , M. Trovo
    • , R. Umer
    • , A. Vascotto
    • , M. Veronese
    • , R. Visintini
    • , M. Zaccaria
    • , D. Zangrando
    •  & M. Zangrando
  2. Lund University, MAX IV Laboratory, SE-22100 Lund, Sweden

    • R. Appio
  3. Department of Electronics Technology, NIKHEF, Science Park 105 1098XG Amsterdam, Netherlands

    • A. Borga
  4. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

    • D. Cocco
    • , A. Lutman
    •  & S. Spampinati
  5. Paul Scherrer Institute, 5232 Villigen-PSI AG, Switzerland

    • P. Craievich
  6. University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy

    • M. Dal Forno
    • , A. Lutman
    • , S. Noe
    •  & M. Petronio
  7. Laboratory of Quantum Optics, Nova Gorica University, Vipavska 13, Rožna Dolina, SI-5000 Nova Gorica, Slovenia

    • G. De Ninno
    • , B. Mahieu
    •  & S. Spampinati
  8. Service des Photons Atomes et Molécules, Commissariat à l'Energie Atomique, Centre d'Etudes de Saclay, 1191 Gif-sur-Yvette, France

    • S. Ferry
    •  & B. Mahieu
  9. Theory Group–ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Italy

    • L. Giannessi
  10. Department of Electrical and Computer Engineering, Colorado State University, Colorado 80523, USA

    • S.G. Biedron
    •  & S.V. Milton
  11. Department of Physics, University of Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy

    • S. Tazzari
  12. IOM-CNR, Laboratorio TASC, S.S. 14 km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy

    • M. Zangrando
  13. Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

    • W.A. Barletta
  14. Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy

    • F. Parmigiani

Authors

  1. Search for E. Allaria in:

  2. Search for R. Appio in:

  3. Search for L. Badano in:

  4. Search for W.A. Barletta in:

  5. Search for S. Bassanese in:

  6. Search for S.G. Biedron in:

  7. Search for A. Borga in:

  8. Search for E. Busetto in:

  9. Search for D. Castronovo in:

  10. Search for P. Cinquegrana in:

  11. Search for S. Cleva in:

  12. Search for D. Cocco in:

  13. Search for M. Cornacchia in:

  14. Search for P. Craievich in:

  15. Search for I. Cudin in:

  16. Search for G. D'Auria in:

  17. Search for M. Dal Forno in:

  18. Search for M.B. Danailov in:

  19. Search for R. De Monte in:

  20. Search for G. De Ninno in:

  21. Search for P. Delgiusto in:

  22. Search for A. Demidovich in:

  23. Search for S. Di Mitri in:

  24. Search for B. Diviacco in:

  25. Search for A. Fabris in:

  26. Search for R. Fabris in:

  27. Search for W. Fawley in:

  28. Search for M. Ferianis in:

  29. Search for E. Ferrari in:

  30. Search for S. Ferry in:

  31. Search for L. Froehlich in:

  32. Search for P. Furlan in:

  33. Search for G. Gaio in:

  34. Search for F. Gelmetti in:

  35. Search for L. Giannessi in:

  36. Search for M. Giannini in:

  37. Search for R. Gobessi in:

  38. Search for R. Ivanov in:

  39. Search for E. Karantzoulis in:

  40. Search for M. Lonza in:

  41. Search for A. Lutman in:

  42. Search for B. Mahieu in:

  43. Search for M. Milloch in:

  44. Search for S.V. Milton in:

  45. Search for M. Musardo in:

  46. Search for I. Nikolov in:

  47. Search for S. Noe in:

  48. Search for F. Parmigiani in:

  49. Search for G. Penco in:

  50. Search for M. Petronio in:

  51. Search for L. Pivetta in:

  52. Search for M. Predonzani in:

  53. Search for F. Rossi in:

  54. Search for L. Rumiz in:

  55. Search for A. Salom in:

  56. Search for C. Scafuri in:

  57. Search for C. Serpico in:

  58. Search for P. Sigalotti in:

  59. Search for S. Spampinati in:

  60. Search for C. Spezzani in:

  61. Search for M. Svandrlik in:

  62. Search for C. Svetina in:

  63. Search for S. Tazzari in:

  64. Search for M. Trovo in:

  65. Search for R. Umer in:

  66. Search for A. Vascotto in:

  67. Search for M. Veronese in:

  68. Search for R. Visintini in:

  69. Search for M. Zaccaria in:

  70. Search for D. Zangrando in:

  71. Search for M. Zangrando in:

Contributions

E.A. and G.D.N. co-wrote the first draft of the paper. All authors co-developed the FERMI concept, designed, constructed and tested the accelerator and FEL systems, performed experiments and analysed the data. S.V.M. was the FERMI project director in the first phase of the project. M.S. is the current FERMI project director.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to E. Allaria.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2012.233

Further reading