Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ultrafast acousto-magneto-plasmonics

An Erratum to this article was published on 16 November 2012

This article has been updated

Abstract

Surface plasmon–polaritons are electromagnetic waves that propagate along metal–dielectric interfaces and exist over a wide range of frequencies. They have become popular research tools owing to their subwavelength confinement and potential ability to perform ultrasensitive optical measurements. Driven by tremendous progress in nanofabrication techniques and ultrafast laser technologies, the applications of surface plasmon–polariton nano-optics extend beyond nanoplasmonics. In this Review, we discuss how the use of hybrid multilayer structures combining different functionalities allows the development of active plasmonic devices and new metrologies. Magneto-plasmonics, acousto-plasmonics and the generation of high-energy photoelectrons using ultrashort surface plasmon–polariton pulses are all examples of how the combination of ideas developed in these individual fields can be used to generate new knowledge, leading to a range of exciting applications in nanophotonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SPPs in metal–ferromagnet–metal multilayer structures.
Figure B1: SPP excitation and sensing
Figure 2: Active magneto-plasmonics.
Figure 3: Ultrafast plasmonic modulation in femtosecond-laser-excited aluminium films.
Figure 4: Ultrafast acousto-plasmonics.
Figure 5: Generation and acceleration of high-energy photoelectrons with femtosecond laser pulses in the Kretschmann geometry.

Similar content being viewed by others

Change history

  • 16 November 2012

    In this Review Article the "-1.0" label in the vertical axis of Fig. 4a should not have been included and the vertical axis should have indicated a scale of "10-6". These revisions have now been corrected in the HTML and PDF versions of the Review Article.

References

  1. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Google Scholar 

  2. Berini, P. & Leon, I. D. Surface plasmon-polariton amplifiers and lasers. Nature Photon. 6, 16–24 (2012).

    Article  ADS  Google Scholar 

  3. Krasavin, A. V. & Zheludev, N. I. Controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).

    Article  ADS  Google Scholar 

  4. Dicken, M. J. et al. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett. 8, 4048–4052 (2008).

    Article  ADS  Google Scholar 

  5. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

    Article  Google Scholar 

  6. Fedutik, Y., Temnov, V. V., Schöps, O., Woggon, U. & Artemyev, M. V. Exciton–plasmon–photon conversion in plasmonic nanostructures. Phys. Rev. Lett. 99, 136802 (2007).

    Article  ADS  Google Scholar 

  7. Temnov, V. V. et al. Active magneto-plasmonics in hybrid metal–ferromagnet structures. Nature Photon. 4, 107–110 (2010).

    Article  ADS  Google Scholar 

  8. Temnov, V. V. & Woggon, U. Nanoplasmonics with colloidal quantum dots in Quantum dots: Optics, Electron Transport and Future Applications (ed. Tartakovskii, A.) 185–201 (Cambridge Univ. Press, 2012).

    Chapter  Google Scholar 

  9. Chiu, K. W. & Quinn, J. J. Magneto-plasma surface waves in solids. Nuovo Cimento 10B, 1–20 (1972).

    Article  ADS  Google Scholar 

  10. Haefner, P., Luck, E. & Mohler, E. Magnetooptical properties of surface plasma waves on copper, silver, gold, and aluminum. Phys. Stat. Sol. 185, 289–299 (1994).

    Article  ADS  Google Scholar 

  11. Oppeneer, P. M. & Antonov, V. N. Energy-band theory of the magneto-optical Kerr effect of selected ferromagnetic materials in Lecture Notes in Physics vol. 466, 29–47 (Springer, 1995).

    Google Scholar 

  12. Krinchik, G. S. Ferromagnetic hall effect at optical frequencies and inner effective magnetic field of ferromagnetic metals. J. Appl. Phys. 35, 1089–1092 (1964).

    Article  ADS  Google Scholar 

  13. Hermann, C. et al. Surface-enhanced magneto-optics in metallic multilayer films. Phys. Rev. B 64, 235422 (2001).

    Article  ADS  Google Scholar 

  14. Gonzalez-Diaz, J. B. et al. Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures. Phys. Rev. B 76, 153402 (2007).

    Article  ADS  Google Scholar 

  15. Ferreiro-Vila, E. et al. Magneto-optical and magnetoplasmonic properties of epitaxial and polycrystalline Au/Fe/Au trilayers. Phys. Rev. B 83, 205120 (2011).

    Article  ADS  Google Scholar 

  16. Mertin-Becerra, D. et al. Enhancement of the magnetic modulation of surface plasmon polaritons in Au/Co/Au films. Appl. Phys. Lett. 97, 183114 (2010).

    Article  ADS  Google Scholar 

  17. Martin-Becerra, D. et al. Spectral dependence of the magnetic modulation of surface plasmon polaritons in noble/ferromagnetic/noble metal films. Phys. Rev. B 86, 035118 (2012).

    Article  ADS  Google Scholar 

  18. Belotelov, V., Doskolovich, L. L. & Zvezdin, A. K. Extraordinary magneto-optical effects and transmission through metal–dielectric plasmonic systems. Phys. Rev. Lett. 98, 077401 (2007).

    Article  ADS  Google Scholar 

  19. Belotelov, V. I. et al. Enhanced magneto-optical effects in magneto-plasmonic crystals. Nature Nanotechnol. 6, 370–276 (2011).

    Article  ADS  Google Scholar 

  20. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  Google Scholar 

  21. Yu, Z., Veronis, G., Wang, Z. & Fan, S. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys. Rev. Lett. 100, 023902 (2008).

    Article  ADS  Google Scholar 

  22. Khanikaev, A. B., Mousavi, S. H., Shvets, G. & Kivshar, Y. S. One-way extraordinary optical transmission and nonreciprocal spoof plasmons. Phys. Rev. Lett. 105, 126804 (2010).

    Article  ADS  Google Scholar 

  23. Hadad, Y. & Steinberg, B. Z. Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides. Phys. Rev. Lett. 105, 233904 (2010).

    Article  ADS  Google Scholar 

  24. Valev, V. K. et al. Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano 5, 91–96 (2011).

    Article  Google Scholar 

  25. Regatos, D., Sepulveda, B., Farina, D., Carrascosa, L. G. & Lechuga, L. M. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing. Opt. Express 19, 8336–8346 (2011).

    Article  ADS  Google Scholar 

  26. Homola, J., Yee, S. S. & Gauglitzb, G. Surface plasmon resonance sensors: Review. Sens. Act. B 54, 3–15 (1999).

    Article  Google Scholar 

  27. MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2008).

    Article  ADS  Google Scholar 

  28. Samson, Z. L., MacDonald, K. F. & Zheludev, N. I. Femtosecond active plasmonics: Ultrafast control of surface plasmon propagation. J. Opt. A 11, 1–4 (2009).

    Article  Google Scholar 

  29. Renger, J., Quidant, R., van Hulst, N., Palomba, S. & Novotny, L. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing. Phys. Rev. Lett. 103, 266802 (2009).

    Article  ADS  Google Scholar 

  30. Rotenberg, N., Betz, M. & van Driel, H. M. Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces. Phys. Rev. Lett. 105, 017402 (2010).

    Article  ADS  Google Scholar 

  31. Fatti, N. D. et al. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B 61, 16956–16966 (2000).

    Article  ADS  Google Scholar 

  32. Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article  ADS  Google Scholar 

  33. Tas, G. & Maris, H. J. Electron diffusion in metals studied by picosecond ultrasonics. Phys. Rev. B 49, 15046–15054 (1994).

    Article  ADS  Google Scholar 

  34. Rotenberg, N., Betz, M. & van Driel, H. M. Ultrafast control of grating-assisted light coupling to surface plasmons. Opt. Lett. 33, 2137–2139 (2008).

    Article  ADS  Google Scholar 

  35. Rotenberg, N., Caspers, J. N. & van Driel, H. M. Tunable ultrafast control of plasmonic coupling to gold films. Phys. Rev. B 80, 245420 (2009).

    Article  ADS  Google Scholar 

  36. Pohl, M. et al. Plasmonic crystals for ultrafast nanophotonics: Optical switching of surface plasmon polaritons. Phys. Rev. B 85, 081401 (2012).

    Article  ADS  Google Scholar 

  37. Caspers, J. N., Rotenberg, N. & van Driel, H. M. Ultrafast silicon-based active plasmonics at telecom wavelengths. Opt. Express 18, 19761–19769 (2010).

    Article  ADS  Google Scholar 

  38. van Exter, M. & Lagendijk, A. Ultrashort surface-plasmon and phonon dynamics. Phys. Rev. Lett. 60, 49–52 (1988).

    Article  ADS  Google Scholar 

  39. Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nature. Mater. 9, 26–30 (2010).

    Article  ADS  Google Scholar 

  40. Wang, J., Wu, J. & Guo, C. Resolving dynamics of acoustic phonons by surface plasmons. Opt. Lett. 32, 719–721 (2007).

    Article  ADS  Google Scholar 

  41. Wang, J. & Guo, C. Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals. Phys. Rev. B 75, 184304 (2007).

    Article  ADS  Google Scholar 

  42. Perner, M. et al. Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles. Phys. Rev. Lett. 85, 792–795 (2000).

    Article  ADS  Google Scholar 

  43. Groeneveld, R. H. M., Sprik, R. & Lagendijk, A. Ultrafast relaxation of electrons probed by surface plasmons at a thin silver film. Phys. Rev. Lett. 64, 784–787 (1990).

    Article  ADS  Google Scholar 

  44. Temnov, V. V. et al. Femtosecond surface plasmon interferometry. Opt. Express 17, 8423–8432 (2009).

    Article  ADS  Google Scholar 

  45. Temnov, V. V. et al. Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons. Preprint at http://arxiv.org/abs/1207.6757 (2012).

  46. Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nature. Mater. 9, 259–265 (2010).

    Article  ADS  Google Scholar 

  47. Getzlaff, M., Bansmann, J. & Schönhense, G. Spin-polarization effects for electrons passing through iron and cobalt films. Solid. State. Commun. 87, 467–469 (1993).

    Article  ADS  Google Scholar 

  48. Crowell, C. R., Spitzer, W. G., Howarth, L. E. & LaBate, E. E. Attenuation length measurements of hot electrons in metal films. Phys. Rev. 127, 2006–2014 (1962).

    Article  ADS  Google Scholar 

  49. Saito, T., Matsuda, O. & Wright, O. B. Picosecond acoustic phonon pulse generation in nickel and chromium. Phys. Rev. B 67, 205421 (2003).

    Article  ADS  Google Scholar 

  50. Hao, H. Y. & Maris, H. J. Experiments with acoustic solitons in crystalline solids. Phys. Rev. B 64, 064302 (2001).

    Article  ADS  Google Scholar 

  51. van Capel, P. J. S. & Dijkhuis, J. I. Time-resolved interferometric detection of ultrafast strain solitons in sapphire. Phys. Rev. B 81, 144106 (2010).

    Article  ADS  Google Scholar 

  52. Devos, A. & Lerouge, C. Evidence of laser-wavelength effect in picosecond ultrasonics: Possible connection with interband transitions. Phys. Rev. Lett. 86, 2669–2672 (2003).

    Article  ADS  Google Scholar 

  53. Cai, W., Hofmeister, H. & Dubiel, M. Importance of lattice contraction in surface plasmon resonance shift for free and embedded silver nanoparticles. Eur. Phys. J. D 13, 245–253 (2001).

    Article  ADS  Google Scholar 

  54. Lerme, J. et al. Influence of lattice contraction on the optical properties and the electron dynamics in silver clusters. Eur. Phys. J. D 17, 213–220 (2001).

    Article  ADS  Google Scholar 

  55. Devos, A. & Louarn, A. L. Strong effect of interband transitions in the picosecond ultrasonics response of metallic thin films. Phys. Rev. B 68, 045405 (2003).

    Article  ADS  Google Scholar 

  56. Temnov, V. V., Sokolowski-Tinten, K., Zhou, P. & von der Linde, D. Ultrafast imaging interferometry at femtosecond laser-excited surfaces. J. Opt. Soc. Am. B 23, 1954 (2006).

    Article  ADS  Google Scholar 

  57. Ruppert, C. et al. Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films. Phys. Rev. B 82, 081416 (2011).

    Article  ADS  Google Scholar 

  58. Zawadzka, J., Jaroszynski, D. A., Carey, J. J. & Wynne, K. Evanescent-wave acceleration of femtosecond electron bunches. Nucl. Instr. Meth. Phys. Res. A 455, 324–328 (2000).

    Article  ADS  Google Scholar 

  59. Irvine, S. E., Dechant, A. & Elezzabi, A. Y. Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. Phys. Rev. Lett. 93, 184801 (2004).

    Article  ADS  Google Scholar 

  60. Racz, P. et al. Strong-field plasmonic electron acceleration with few-cycle, phase-stabilized laser pulses. Appl. Phys. Lett. 98, 111116 (2011).

    Article  ADS  Google Scholar 

  61. Welsh, G. H. & Wynne, K. Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces. Opt. Express 17, 2470–2480 (2009).

    Article  ADS  Google Scholar 

  62. Kadlec, F., Kuzel, P. & Coutaz, J. L. Study of terahertz radiation generated by optical rectification on thin gold films. Opt. Lett. 30, 1402–1404 (2005).

    Article  ADS  Google Scholar 

  63. Liu, X., Stock, R. & Rudolph, W. Ballistic electron transport in Au films. Phys. Rev. B 72, 195431 (2005).

    Article  ADS  Google Scholar 

  64. Chau, K. J., Johnson, M. & Elezzabi, A. Y. Electron-spin-dependent terahertz light transport in spintronic–plasmonic media. Phys. Rev. Lett. 98, 133901 (2007).

    Article  ADS  Google Scholar 

  65. Beaurepaire, E., Merle, J. C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  ADS  Google Scholar 

  66. Guidoni, L., Beaurepaire, E. & Bigot, J.-Y. Magneto-optics in the ultrafast regime: Thermalization of spin populations in ferromagnetic films. Phys. Rev. Lett. 89, 017401 (2002).

    Article  ADS  Google Scholar 

  67. Güdde, J., Conrad, U., Jähnke, V., Hohlfeld, J. & Matthias, E. Magnetization dynamics of Ni and Co films on Cu(001) and of bulk nickel surfaces. Phys. Rev. B 59, R6608–R6611 (1999).

    Article  ADS  Google Scholar 

  68. Bigot, J.-Y., Vomir, M. & Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nature Phys. 5, 515–520 (2009).

    Article  ADS  Google Scholar 

  69. Vaterlaus, A., Beutler, T. & Meier, F. Spin-lattice relaxation time of ferromagnetic gadolinium determined with time-resolved spin-polarized photoemission. Phys. Rev. Lett. 67, 2214–3317 (1991).

    Article  Google Scholar 

  70. Vomir, M., Andrade, L. H. F., Guidoni, L., Beaurepaire, E. & Bigot, J.-Y. Real space trajectory of the ultrafast magnetization dynamics in ferromagnetic metals. Phys. Rev. Lett. 94, 237601 (2005).

    Article  ADS  Google Scholar 

  71. Bigot, J.-Y., Vomir, M., Andrade, L. H. F. & Beaurepaire, E. Ultrafast magnetization dynamics in ferromagnetic cobalt: The role of anisotropy. Chem. Phys. 76, 137–146 (2005).

    Article  Google Scholar 

  72. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  ADS  Google Scholar 

  73. Vahaplar, K. et al. Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state. Phys. Rev. Lett. 103, 117201 (2009).

    Article  ADS  Google Scholar 

  74. Steil, D., Alebrand, S., Hassdenteufel, A., Cinchetti, M. & Aeschlimann, M. All-optical magnetization recording by tailoring optical excitation parameters. Phys. Rev. B 84, 224498 (2011).

    Article  ADS  Google Scholar 

  75. Alebrand, S., Hassdenteufel, A., Steil, D., Cinchetti, M. & Aeschlimann, M. Interplay of heating and helicity in all-optical magnetization switching. Phys. Rev. B 85, 092401 (2012).

    Article  ADS  Google Scholar 

  76. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nature Commun. 3, 1–6 (2012).

    Article  Google Scholar 

  77. Back, C. H. et al. Magnetization reversal in ultrashort magnetic field pulses. Phys. Rev. Lett. 81, 3251–3254 (1998).

    Article  ADS  Google Scholar 

  78. Atulasimha, J. & Bandyopadhyay, S. Bennett clocking of nanomagnetic logic using multiferroic single-domain nanomagnets. Appl. Phys. Lett. 97, 173105 (2010).

    Article  ADS  Google Scholar 

  79. Scherbakov, A. V. et al. Coherent magnetization precession in ferromagnetic (Ga, Mn)As induced by picosecond acoustic pulses. Phys. Rev. Lett. 105, 117204 (2010).

    Article  ADS  Google Scholar 

  80. Kim, J.-W., Vomir, M. & Bigot, J.-Y. Ultrafast magneto-acoustics in nickel films. Phys. Rev. Lett. xx, xxxx–xxxx (2012).

    Google Scholar 

  81. Thomas, R. L., Turner, G. & Bohm, H. V. Circularly polarized ultrasonic shear waves in metals. Phys. Rev. Lett. 20, 207–208 (1968).

    Article  ADS  Google Scholar 

  82. Dobbs, E. R. Electromagnetic generation of ultrasonic waves in metals. J. Phys. Chem. Sol. 31, 1657–1667 (1970).

    Article  ADS  Google Scholar 

  83. Pezeril, T., Klieber, C., Andrieu, S. & Nelson, K. A. Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol. Phys. Rev. Lett. 102, 107402 (2009).

    Article  ADS  Google Scholar 

  84. Stöhr, J., Siegmann, H. C., Kashuba, A. & Gamble, S. J. Magnetization switching without charge or spin currents. Appl. Phys. Lett. 94, 072504 (2009).

    Article  ADS  Google Scholar 

  85. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nature Photon. 5, 31–34 (2010).

    Article  ADS  Google Scholar 

  86. Slonzcewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mat. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  87. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    Article  ADS  Google Scholar 

  88. Hartstein, A., Burstein, E., Maradudin, A. A., Brewer, R. & Wallis, R. F. Surface polaritons on semi-infinite gyromagnetic media. J. Phys. C 6, 1266–1276 (1973).

    Article  ADS  Google Scholar 

  89. Gollub, J. N., Smith, D. R., Vier, D. C., Perram, T. & Mock, J. J. Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability. Phys. Rev. B 71, 195402 (2005).

    Article  ADS  Google Scholar 

  90. Kretschmann, E. & Raether, H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 2135–2136 (1968).

    Article  ADS  Google Scholar 

  91. Fukui, M., So, V. C. Y. & Normandin, R. Lifetimes of surface plasmons in thin silver films. Phys. Stat. Sol. 91, K61–K64 (1979).

    Article  ADS  Google Scholar 

  92. Sarid, D. Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett. 47, 1027–1930 (1981).

    Article  ADS  Google Scholar 

  93. Weber, W. H. & Ford, G. W. Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation. Opt. Lett. 6, 122 (1981).

    Article  ADS  Google Scholar 

  94. Nagpal, P., Lindquist, N. C., Oh, S. H. & Norris, D. J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009).

    Article  ADS  Google Scholar 

  95. Simon, H. J., Mitchell, D. E. & Watson, J. G. Optical second harmonic generation with surface plasmon in silver films. Phys. Rev. Lett. 33, 1531–1534 (1974).

    Article  ADS  Google Scholar 

  96. Grosse, N. B., Heckmann, J. & Woggon, U. Nonlinear plasmon-photon interaction resolved by k-space spectroscopy. Phys. Rev. Lett. 108, 136802 (2012).

    Article  ADS  Google Scholar 

  97. Schouten, H. F. et al. Plasmon-assisted two-slit transmission: Young's experiment revisited. Phys. Rev. Lett. 94, 053901 (2005).

    Article  ADS  Google Scholar 

  98. Gay, G. et al. The response of nanostructured surfaces in the near field. Nature Phys. 2, 262–267 (2006).

    Article  ADS  Google Scholar 

  99. Temnov, V. V., Woggon, U., Dintinger, J., Devaux, E. & Ebbesen, T. W. Surface plasmon interferometry: Measuring group velocity of surface plasmons. Opt. Lett. 32, 1235–1237 (2007).

    Article  ADS  Google Scholar 

  100. Fan, S. Magnet-controlled plasmons. Nature Photon. 4, 76–77 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks U. Woggon, G. Armelles, A. Cebollada, A. Garcia-Martin, M. U. Gonzalez, T. Thomay, R. Bratschitsch, A. Leitenstorfer, D. Makarov, K. Nelson, A. Maznev, T. Pezeril, S. Andrieu, P. Ruello and O. Kovalenko for stimulating discussions, and the Region Pays de La Loire for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily V. Temnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temnov, V. Ultrafast acousto-magneto-plasmonics. Nature Photon 6, 728–736 (2012). https://doi.org/10.1038/nphoton.2012.220

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing