Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast all-optical switching by single photons

Abstract

An as yet outstanding goal in quantum optics is the realization of fast optical nonlinearities at the single-photon level. This would allow for the implementation of optical devices with new functionalities such as single-photon switches/transistors1,2 or controlled-phase gates3. Although nonlinear optics effects at the single-emitter level have been demonstrated in a number of systems4,5,6,7,8,9,10,11,12,13, none of these experiments showed single-photon switching on ultrafast timescales. Here, we perform pulsed two-colour spectroscopy and demonstrate that, in a strongly coupled quantum dot–cavity system, the presence of a single photon on one of the fundamental polariton transitions can turn on light scattering on a transition from the first to the second Jaynes–Cummings manifold. The overall switching time of this single-photon all-optical switch14 is 50 ps. In addition, we use the single-photon nonlinearity to implement a pulse correlator. Our quantum dot–cavity system could form the building block of future high-bandwidth photonic networks operating in the quantum regime15,16,17,18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A single-photon all-optical switch.
Figure 2: Two-colour spectroscopy of the strongly coupled QD–cavity device.
Figure 3: Ultrafast nonlinear response.
Figure 4: Pulse correlator.

Similar content being viewed by others

References

  1. Chang, D. E., Sørensen A. S., Demler E. A. & Lukin, M. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  2. Hwang, J. et al. A single-molecule optical transistor. Nature 460, 76–80 (2007).

    Article  ADS  Google Scholar 

  3. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  4. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  5. Schuster, I. et al. Nonlinear spectroscopy of photons bound to one atom. Nature Phys. 4, 382–385 (2008).

    Article  ADS  Google Scholar 

  6. Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).

    Article  ADS  Google Scholar 

  7. Fink, J. M. et al. Climbing the Jaynes–Cummings ladder and observing its √n nonlinearity in a cavity QED system. Nature 454, 315–318 (2008).

    Article  ADS  Google Scholar 

  8. Deppe, F. et al. Two-photon probe of the Jaynes–Cummings model and controlled symmetry breaking in circuit QED. Nature Phys. 4, 686–691 (2008).

    Article  ADS  Google Scholar 

  9. Bishop, L. S. et al. Nonlinear response of the vacuum Rabi resonance. Nature Phys. 5, 105–109 (2009).

    Article  ADS  Google Scholar 

  10. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  11. Srinivasan, K. & Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature 450, 862–866 (2007).

    Article  ADS  Google Scholar 

  12. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    Article  ADS  Google Scholar 

  13. Kasprzak, J. et al. Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system. Nature Mater. 9, 304–308 (2010).

    Article  ADS  Google Scholar 

  14. Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunneling and blockade. Nature Phys. 4, 859–863 (2008).

    Article  ADS  Google Scholar 

  15. O'Brien, J. L., Furusawa, A. & Vučkovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  16. Faraon, A., Waks, E., Englund, D., Fushman, I. & Vučkovic, J. Efficient photonic crystal cavity-waveguide couplers. Appl. Phys. Lett. 90, 073102 (2007).

    Article  ADS  Google Scholar 

  17. Brossard, F. S. F. et al. Strongly coupled single quantum dot in a photonic crystal waveguide cavity. Appl. Phys. Lett. 97, 111101 (2010).

    Article  ADS  Google Scholar 

  18. Bose, R., Sridharan, D., Solomon, G. & Waks, E. Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide. Opt. Express 19, 5398–5409 (2011).

    Article  ADS  Google Scholar 

  19. Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002).

    Article  ADS  Google Scholar 

  20. Kubanek, A. et al. Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett. 101, 203602 (2008).

    Article  ADS  Google Scholar 

  21. Lang, C. et al. Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011).

    Article  ADS  Google Scholar 

  22. Reinhard, A. et al. Strongly correlated photons on a chip. Nature Photon. 6, 93–96 (2012).

    Article  ADS  Google Scholar 

  23. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  24. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  25. Peter, E. et al. Exciton–photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    Article  ADS  Google Scholar 

  26. Imamoglu, A. et al. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997).

    Article  ADS  Google Scholar 

  27. Mücke, M. et al. Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010).

    Article  ADS  Google Scholar 

  28. Hoi, I.-C. et al. Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011).

    Article  ADS  Google Scholar 

  29. Tanji-Suzuki, H., Chen, W., Landig, R., Simon, J. & Vuletic, V. Vacuum-induced transparency. Science 333, 1266–1269 (2011).

    Article  ADS  Google Scholar 

  30. Pinotsi, D., Fallahi, P., Miguel-Sanchez, J. & Imamoglu, A. Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures. IEEE J. Quant. Electron 47, 1371–1374 (2011).

    Article  ADS  Google Scholar 

  31. Englund, D. et al. Ultrafast photon–photon interaction in a strongly coupled quantum dot–cavity system. Phys. Rev. Lett. 108, 093604 (2012).

    Article  ADS  Google Scholar 

  32. Bose, R., Sridharan, D., Kim, H., Solomon, G. S. & Waks, E. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett. 108, 227402 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Centre of Competence in Research, Quantum Photonics (NCCR QP), a research instrument of the Swiss National Science Foundation (SNSF), and a European Research Council (ERC) Advanced Investigator Grant (A.I.). The authors thank J. M. Sanchez and U. Grob for assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Contributions

T.V. and A.R. conducted the experiments, analysed the data and performed the simulations. M.W. made essential contributions to the experiment in its early stages. A.B., K.J.H. and E.L.H. fabricated the structure that ensures maximal dot cavity coupling. T.V., A.R. and A.I. conceived the experiment, discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Thomas Volz or Ataç Imamoğlu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 613 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volz, T., Reinhard, A., Winger, M. et al. Ultrafast all-optical switching by single photons. Nature Photon 6, 605–609 (2012). https://doi.org/10.1038/nphoton.2012.181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing