Article | Published:

Terabit free-space data transmission employing orbital angular momentum multiplexing

Nature Photonics volume 6, pages 488496 (2012) | Download Citation

Abstract

The recognition in the 1990s that light beams with a helical phase front have orbital angular momentum has benefited applications ranging from optical manipulation to quantum information processing. Recently, attention has been directed towards the opportunities for harnessing such beams in communications. Here, we demonstrate that four light beams with different values of orbital angular momentum and encoded with 42.8 × 4 Gbit s−1 quadrature amplitude modulation (16-QAM) signals can be multiplexed and demultiplexed, allowing a 1.37 Tbit s−1 aggregated rate and 25.6 bit s−1 Hz−1 spectral efficiency when combined with polarization multiplexing. Moreover, we show scalability in the spatial domain using two groups of concentric rings of eight polarization-multiplexed 20 × 4 Gbit s−1 16-QAM-carrying orbital angular momentum beams, achieving a capacity of 2.56 Tbit s−1 and spectral efficiency of 95.7 bit s−1 Hz−1. We also report data exchange between orbital angular momentum beams encoded with 100 Gbit s−1 differential quadrature phase-shift keying signals. These demonstrations suggest that orbital angular momentum could be a useful degree of freedom for increasing the capacity of free-space communications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

  2. 2.

    Classical Electrodynamics (Wiley, 1962).

  3. 3.

    , & Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, 1989).

  4. 4.

    The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909).

  5. 5.

    Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

  6. 6.

    , , & Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

  7. 7.

    , & Advances in optical angular momentum. Laser Photon. Rev. 2, 299–313 (2008).

  8. 8.

    & Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011).

  9. 9.

    & Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).

  10. 10.

    et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011).

  11. 11.

    & Proposal for generating brilliant X-ray beams carrying orbital angular momentum. Phys. Rev. Lett. 100, 124801 (2008).

  12. 12.

    , & Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

  13. 13.

    , , , & The generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. Opt. Commun. 127, 183–188 (1996).

  14. 14.

    et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 99, 087701 (2007).

  15. 15.

    et al. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J. Phys. 14, 033001 (2012).

  16. 16.

    & Shaping the future of manipulation. Nature Photon. 5, 335–342 (2011).

  17. 17.

    et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).

  18. 18.

    et al. Creation and manipulation of three-dimensional optically trapped structures. Science 296, 1101–1103 (2002).

  19. 19.

    & Tweezers with a twist. Nature Photon. 5, 343–348 (2011).

  20. 20.

    , , , & Isolated optical vortex knots. Nature Phys. 6, 118–121 (2010).

  21. 21.

    , , , & Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express 14, 3792–3805 (2006).

  22. 22.

    II Photon orbital angular momentum in astronomy. Astron. Astrophys. 492, 883–922 (2008).

  23. 23.

    , , & Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

  24. 24.

    , & Twisted photons. Nature Phys. 3, 305–310 (2007).

  25. 25.

    , & Beating the channel capacity limit for linear photonic superdense coding. Nature Phys. 4, 282–286 (2008).

  26. 26.

    et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nature Photon. 3, 720–723 (2009).

  27. 27.

    et al. Quantum correlations in optical angle-orbital angular momentum variables. Science 329, 662–665 (2010).

  28. 28.

    et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004).

  29. 29.

    , & Ultimate channel capacity of free-space optical communications. J. Opt. Netw 4, 501–516 (2005).

  30. 30.

    Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation. Opt. Express 19, 14277–14289 (2011).

  31. 31.

    , & Demonstration of spatial mode division multiplexing using Laguerre–Gaussian mode beam in telecom-wavelength in Proceedings of the IEEE Photonics Conference paper WBB2, PHO 2010, Denver (IEEE Photonics Society, 2010).

  32. 32.

    et al. Demonstration of 12.8-bit/s/Hz spectral efficiency using 16-QAM signals over multiple orbital-angular-momentum modes, in Proceedings of the European Conference on Optical Communications paper We.10.P1.76, ECOC 2011, Geneva (Optical Society of America, 2011).

  33. 33.

    et al. 25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes, in Proceedings of the IEEE Photonics Conference paper WW2, PHO 2011, Denver (IEEE Photonics Society, 2011).

  34. 34.

    et al. Demonstration of 2-Tbit/s data link using orthogonal orbital-angular-momentum modes and WDM, in Proceedings of the Frontiers in Optics paper FTuT1, FiO/LS 2011, San Jose (Optical Society of America, 2011).

  35. 35.

    et al. Experimental demonstration of 100-Gbit/s DQPSK data exchange between orbital-angular-momentum modes, in Proceedings of the Optical Fiber Communication Conference paper OW1l.5, OFC/NFOEC 2012, Los Angeles (Optical Society of America, 2012).

  36. 36.

    et al. Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing, in Proceedings of the European Conference on Optical Communications paper Th.13.A.3, ECOC 2011, Geneva (Optical Society of America, 2011).

  37. 37.

    et al. Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM. J. Lightwave Technol. 29, 373–377 (2011).

  38. 38.

    et al. 64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing. J. Lightwave Technol. 29, 571–577 (2011).

  39. 39.

    et al. Ultra-high capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-band wideband optical amplification. J. Lightwave Technol. 29, 578–586 (2011).

  40. 40.

    et al. Transmission of single-channel 16-QAM data signals at terabaud symbol rates. J. Lightwave Technol. 30, 504–511 (2012).

  41. 41.

    et al. 1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency. Opt. Express 19, B958–B964 (2011).

  42. 42.

    et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Lightwave Technol. 30, 521–531 (2012).

  43. 43.

    et al. 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photon. 5, 364–371 (2011).

  44. 44.

    , , & Multimode Hong–Ou–Mandel Interference. Phys. Rev. Lett. 90, 143601 (2003).

  45. 45.

    Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94, 153901 (2005).

  46. 46.

    , & Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. Appl. Opt. 47, 2414–2429 (2008).

  47. 47.

    , , , & Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states. Opt. Express 20, 452–461 (2012).

  48. 48.

    , & Generation and propagation of radially polarized beams in optical fibers. Opt. Lett. 34, 2525–2527 (2009).

  49. 49.

    , & Long-range fiber-transmission of photons with orbital angular momentum, in Proceedings of the Conference on Lasers and Electro-Optics paper CTuB1, CLEO 2011 (Optical Society of America, 2011).

  50. 50.

    & Laser beams and resonators. Appl. Opt. 5, 1550–1567 (1966).

Download references

Acknowledgements

The authors thank A. Bozovich, B. Shamee, L. Zhang, K. Birnbaum, J. Choi, B. Erkmen, M. Neifeld and R. Willis for very fruitful discussions. This work was supported by the Defense Advanced Research Projects Agency (DARPA) under the InPho (Information in a Photon) programme.

Author information

Affiliations

  1. Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA

    • Jian Wang
    • , Jeng-Yuan Yang
    • , Irfan M. Fazal
    • , Nisar Ahmed
    • , Yan Yan
    • , Hao Huang
    • , Yongxiong Ren
    • , Yang Yue
    •  & Alan E. Willner
  2. Wuhan National Laboratory for Optoelectronics, College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China

    • Jian Wang
  3. Jet Propulsion Lab, 4800 Oak Grove Drive, Pasadena, California 91109, USA

    • Samuel Dolinar
  4. School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel

    • Moshe Tur

Authors

  1. Search for Jian Wang in:

  2. Search for Jeng-Yuan Yang in:

  3. Search for Irfan M. Fazal in:

  4. Search for Nisar Ahmed in:

  5. Search for Yan Yan in:

  6. Search for Hao Huang in:

  7. Search for Yongxiong Ren in:

  8. Search for Yang Yue in:

  9. Search for Samuel Dolinar in:

  10. Search for Moshe Tur in:

  11. Search for Alan E. Willner in:

Contributions

J.W., J.Y.Y., I.M.F., H.H., Y.Y., S.D., M.T. and A.E.W. developed the concept and conceived the experiments. J.W. performed the theoretical and numerical analyses. J.W., J.Y.Y., I.M.F., N.A., Y.Y., H.H., Y.R. and Y.Y. carried out the measurements and analysed the data. S.D., M.T. and A.E.W. provided technical support. All authors contributed to writing and finalizing the Article.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Jian Wang or Alan E. Willner.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2012.138

Further reading