Avalanche amplification of a single exciton in a semiconductor nanowire

Article metrics


Interfacing single photons and electrons is a crucial element in sharing quantum information between remote solid-state qubits1,2,3,4,5,6,7,8. Semiconductor nanowires offer the unique possibility of combining optical quantum dots with avalanche photodiodes, thus enabling the conversion of an incoming single photon into a macroscopic current for efficient electrical detection. Currently, millions of excitation events are required to perform electrical readout of an exciton qubit state1,6. Here, we demonstrate multiplication of carriers from only a single exciton generated in a quantum dot after tunnelling into a nanowire avalanche photodiode. Owing to the large amplification of both electrons and holes (>104), we reduce by four orders of magnitude the number of excitation events required to electrically detect a single exciton generated in a quantum dot. This work represents a significant step towards achieving single-shot electrical readout and offers a new functionality for on-chip quantum information circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Single quantum dot in a nanowire APD.
Figure 2: Single photon detection with a nanowire photodiode.
Figure 3: Resonant single photon detection in the quantum dot.


  1. 1

    Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

  2. 2

    Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

  3. 3

    Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

  4. 4

    Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

  5. 5

    Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

  6. 6

    Michaelis de Vasconcellos, S., Gordon, S., Bichler, M., Meier, T. & Zrenner, A. Coherent control of a single exciton qubit by optoelectronic manipulation. Nature Photon. 4, 545–548 (2010).

  7. 7

    Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

  8. 8

    Benny, Y. et al. Coherent optical writing and reading of the exciton spin state in single quantum dots. Phys. Rev. Lett. 106, 040504 (2011).

  9. 9

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

  10. 10

    Vrijen, R. & Yablonovitch, E. A spin-coherent semiconductor photo-detector for quantum communication. Physica E 10, 569–575 (2001).

  11. 11

    Kosaka, H. et al. Spin state tomography of optically injected electrons in a semiconductor. Nature 457, 702–705 (2009).

  12. 12

    Capasso, F. Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987).

  13. 13

    Kardynal, B. E., Yuan, Z. L. & Shields, A. J. An avalanche-photodiode-based photon-number-resolving detector. Nature Photon. 2, 425–428 (2008).

  14. 14

    Yang, C., Barrelet, C. J., Capasso, F. & Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 6, 2929–2934 (2006).

  15. 15

    Hayden, O., Agarwal, R. & Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater. 5, 352–356 (2006).

  16. 16

    Reimer, M. E. et al. Single photon emission and detection at the nanoscale utilizing semiconductor nanowires. J. Nanophoton. 5, 053502 (2011).

  17. 17

    Gabor, N. M., Zhong, Z., Bosnick, K., Park, J. & McEuen, P. L. Extremely efficient multiple electron–hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009).

  18. 18

    Tomioka, K., Motohisa, J., Hara, S., Hiruma, K. & Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 10, 1639–1644 (2010).

  19. 19

    Heurlin, M. et al. Axial InP nanowire tandem junction grown on a silicon substrate. Nano Lett. 11, 2028–2031 (2011).

  20. 20

    Messing, M. E. et al. Growth of straight InAs-on-GaAs nanowire heterostructures. Nano Lett. 11, 3899–3905 (2011).

  21. 21

    Minot, E. D. et al. Single quantum dot nanowire LEDs. Nano Lett. 7, 367–371 (2007).

  22. 22

    Pearsall, T. P. Threshold energies for impact ionization by electrons and holes in InP. Appl. Phys. Lett. 35, 168–170 (1979).

  23. 23

    Algra, R. E. et al. Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008).

  24. 24

    Reimer, M. E. et al. Bright single-photon sources in bottom-up tailored nanowires. Nature Commun. 3, 737 (2012).

  25. 25

    Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239–244 (2010).

  26. 26

    Beham, E., Zrenner, A., Findeis, F., Bichler, M. & Abstreiter, G. Nonlinear ground-state absorption observed in a single quantum dot. Appl. Phys. Lett. 79, 2808–2810 (2001).

  27. 27

    van Kouwen, M. P. et al. Single quantum dot nanowire photodetectors. Appl. Phys. Lett. 97, 113108 (2010).

  28. 28

    Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

  29. 29

    Stotz, J. A. H. & Freeman M. R. A stroboscopic scanning solid immersion lens microscope. Rev. Sci. Instrum. 68, 4468–4477 (1997).

  30. 30

    Aspnes, D. E. & Studna, A. A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009 (1983).

Download references


The authors thank J. Rarity and S.M. Frolov for useful scientific discussions. This work was supported by the Netherlands Organization for Scientific Research (NWO), the Dutch Organization for Fundamental Research on Matter (FOM), the European Research Council and a DARPA QUEST grant.

Author information

The experiments were conceived and designed by G.B., M.E.R. and V.Z., and were carried out by G.B. and M.E.R. The sample was grown by M.H. and E.P.A.M.B. and contacted by M.E.R. The data were analysed by G.B., M.E.R. and V.Z. The manuscript was written by G.B. and M.E.R. with input from M.H., E.P.A.M.B., L.P.K. and V.Z.

Correspondence to Gabriele Bulgarini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 880 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bulgarini, G., Reimer, M., Hocevar, M. et al. Avalanche amplification of a single exciton in a semiconductor nanowire. Nature Photon 6, 455–458 (2012) doi:10.1038/nphoton.2012.110

Download citation

Further reading