Shaping the future of manipulation

Abstract

Optical forces can be used to manipulate biological and colloidal material in a non-contact manner. This forms the foundation of a wealth of exciting science, particularly in the fields of physics, biology and soft condensed matter. Although the standard Gaussian single-beam trap remains a very powerful tool, shaping the phase and amplitude of a light field provides unusual light patterns that add a major new dimension to research into particle manipulation. This Review summarizes the impact and emerging applications of shaped light in the field of optical manipulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Optical tweezers are conceptually analogous to a harmonic oscillator.
Figure 2: Example of holographic optical trapping.
Figure 3: Examples of elaborate laser modes generated by diffractive elements.
Figure 4: Biological applications of beam-shaping systems.
Figure 5: Optical fractionation in an optical landscape.

References

  1. 1

    Nichols, E. F. & Hull, G. F. A preliminary communication on the pressure of heat and light radiation. Phys. Rev. 13, 307–320 (1901).

    ADS  Google Scholar 

  2. 2

    Lebedev, P. N. Experimental examination of light pressure. Ann. Phys. 6, 433–458 (1901).

    Google Scholar 

  3. 3

    Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. & Block, S. M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005).

    ADS  Google Scholar 

  4. 4

    Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  Google Scholar 

  5. 5

    McLeod, J. H. The axicon: A new type of optical element J. Opt. Soc. Am. 44, 592–597 (1954).

    ADS  Google Scholar 

  6. 6

    Visscher, K., Gross, S. P. & Block, S. M. Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Top. Quant. 2, 1066–1076 (1996).

    Google Scholar 

  7. 7

    Sasaki, K., Koshioka, M., Misawa, H., Kitamura, N. & Masuhara, H. Laser-scanning micromanipulation and spatial patterning of fine particles. Jpn. J. Appl. Phys. 30, L907–L909 (1991).

    ADS  Google Scholar 

  8. 8

    Chowdhury, A., Ackerson, B. J. & Clark, N. A. Laser-induced freezing. Phys. Rev. Lett. 55, 833–836 (1985).

    ADS  Google Scholar 

  9. 9

    Bustamante, C., Macosko, J. & Wuite, G. Grabbing the cat by the tail: Manipulating molecules one by one. Nature Rev. Mol. Cell. Bio. 1, 130–136 (2000).

    Google Scholar 

  10. 10

    Nishizaka, T., Miyata, H., Yoshikawa, H., Ishiwata, S. & Kinosita, K. Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251–254 (1995).

    ADS  Google Scholar 

  11. 11

    Block, S. M. Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995 (2007).

    ADS  Google Scholar 

  12. 12

    Capitanio, M., Cicchi, R. & Pavone, F. S. Continuous and time-shared multiple optical tweezers for the study of single motor proteins. Opt. Laser. Eng. 45, 450–457 (2007).

    Google Scholar 

  13. 13

    Martín-Badosa, E. et al. Design strategies for optimizing holographic optical tweezers set-ups. J. Opt. A 9, S267 (2007).

    ADS  Google Scholar 

  14. 14

    Curtis, J. E., Koss, B. A. & Grier, D. G Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002).

    ADS  Google Scholar 

  15. 15

    van Putten, E. G., Vellekoop, I. M. & Mosk, A. P. Spatial amplitude and phase modulation using commercial twisted nematic LCDs. Appl. Opt. 47, 2076–2081 (2008).

    ADS  Google Scholar 

  16. 16

    Reicherter, M., Haist, T., Wagemann, E. U. & Tiziani, H. J. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 24, 608–610 (1999).

    ADS  Google Scholar 

  17. 17

    Liesener, J., Reicherter, M., Haist, T. & Tiziani, H. J. Multi-functional optical tweezers using computer-generated holograms. Opt. Commun. 185, 77–82 (2000).

    ADS  Google Scholar 

  18. 18

    Meister, M. & Winfield, R. J. Novel approaches to direct search algorithms for the design of diffractive optical elements. Opt. Commun. 203, 39–49 (2002).

    ADS  Google Scholar 

  19. 19

    Polin, M., Ladavac, K., Lee, S.-H., Roichman, Y. & Grier, D. G. Optimized holographic optical traps. Opt. Express 13, 5831–5845 (2005).

    ADS  Google Scholar 

  20. 20

    Gerchberg, R. & Saxton, W. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar 

  21. 21

    Di Leonardo, R., Ianni, F. & Ruocco, G. Computer generation of optimal holograms for optical trap arrays. Opt. Express 15, 1913–1922 (2007).

    ADS  Google Scholar 

  22. 22

    van der Horst, A. & Forde, N. R. Calibration of dynamic holographic optical tweezers for force measurements on biomaterials. Opt. Express 16, 20987–21003 (2008).

    ADS  Google Scholar 

  23. 23

    Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    ADS  Google Scholar 

  24. 24

    Preece, D. et al. Increasing trap stiffness with position clamping in holographic optical tweezers. Opt. Express 17, 22718–22725 (2009).

    ADS  Google Scholar 

  25. 25

    Jesacher, A., Fürhapter, S., Bernet, S. & Ritsch-Marte, M. Diffractive optical tweezers in the Fresnel regime. Opt. Express 12, 2243–2250 (2004).

    ADS  Google Scholar 

  26. 26

    Glückstad, J. Phase contrast image synthesis. Opt. Commun. 130, 225–230 (1996).

    ADS  Google Scholar 

  27. 27

    Rodrigo, P. J., Daria, V. R. & Glückstad, J. Real-time three-dimensional optical micromanipulation of multiple particles and living cells. Opt. Lett. 29, 2270–2272 (2004).

    ADS  Google Scholar 

  28. 28

    Leach, J. et al. 3D manipulation of particles into crystal structures using holographic optical tweezers. Opt. Express 12, 220–226 (2004).

    ADS  Google Scholar 

  29. 29

    Korda P. T. & Grier, D. G. Annealing thin colloidal crystals with optical gradient forces. J. Chem. Phys. 114, 7570–7573 (2001).

    ADS  Google Scholar 

  30. 30

    Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Colloquium: Momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79, 1197–1216 (2007).

    ADS  Google Scholar 

  31. 31

    Padgett, M. J., Courtial, J. & Allen, L. Light's orbital angular momentum. Phys. Today 57, 35–40 (May 2004).

    ADS  Google Scholar 

  32. 32

    Padgett, M. & Bowman, R. Tweezers with a twist. Nature Photon. 5, 343–348 (2011).

    ADS  Google Scholar 

  33. 33

    Allen, L., Beijersbergen, M., Spreeuw, R. & Woerdman, J. Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS  Google Scholar 

  34. 34

    He, H., Friese, M. E. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995).

    ADS  Google Scholar 

  35. 35

    O'Neil, A., MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).

    ADS  Google Scholar 

  36. 36

    Simpson, N. B., Dholakia, K., Allen, L. & Padgett, M. J. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner. Opt. Lett. 22, 52–54 (1997).

    ADS  Google Scholar 

  37. 37

    Volke-Sepúlveda, K., Chavez-Cerda, S., Garces-Chavez, V. & Dholakia, K. Three-dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles. J. Opt. Soc. Am. B 21, 1749–1757 (2004).

    ADS  Google Scholar 

  38. 38

    Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).

    ADS  Google Scholar 

  39. 39

    Bishop, A. I., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett. 92, 198104 (2004).

    ADS  Google Scholar 

  40. 40

    La Porta, A. & Wang, M. D. Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92, 190801 (2004).

    ADS  Google Scholar 

  41. 41

    Cheng, Z. & Mason, T. Rotational diffusion microrheology. Phys. Rev. Lett. 90, 018304 (2003).

    ADS  Google Scholar 

  42. 42

    Parkin, S. J., Knöner, G., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Picoliter viscometry using optically rotated particles. Phys. Rev. E 76, 041507 (2007).

    ADS  Google Scholar 

  43. 43

    Ladavac, K. & Grier, D. G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express 12, 1144–1149 (2004).

    ADS  Google Scholar 

  44. 44

    Gahagan, K. T. & Swartzlander, J. G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996).

    ADS  Google Scholar 

  45. 45

    Lorenz, R. M. et al. Vortex-trap-induced fusion of femtoliter-volume aqueous droplets. Anal. Chem. 79, 224–228 (2007).

    Google Scholar 

  46. 46

    Prentice, P., Cuschieri, A., Dholakia, K., Prausnitz, M. & Campbell, P. Membrane disruption by optically controlled microbubble cavitation. Nature Phys. 1, 107–110 (2005).

    ADS  Google Scholar 

  47. 47

    Durnin, J., Miceli, J. J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987).

    ADS  Google Scholar 

  48. 48

    Berry, M. V. & Balazs, N. L. Nonspreading wave packets. Am. J. Phys. 47, 264–267 (1979).

    ADS  Google Scholar 

  49. 49

    Gutiérrez-Vega, J., Iturbe-Castillo, M. & Cháavez-Cerda, S. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett. 25, 1493–1495 (2000).

    ADS  Google Scholar 

  50. 50

    Bouchal, Z., Wagner, J. & Chlup, M. Self-reconstruction of a distorted nondiffracting beam. Opt. Commun. 151, 207–211 (1998).

    ADS  Google Scholar 

  51. 51

    Čižmár, T., Garcés-Chávez, V., Dholakia, K. & Zemánek, P. Optical conveyor belt for delivery of submicron objects. Appl. Phys. Lett. 86, 174101 (2005).

    ADS  Google Scholar 

  52. 52

    Karásek, V. et al. Long-range one-dimensional longitudinal optical binding. Phys. Rev. Lett. 101, 143601 (2008).

    ADS  Google Scholar 

  53. 53

    Siviloglou, G. A., Broky, J., Dogariu, A. & Christodoulides, D. N. Observation of accelerating airy beams. Phys. Rev. Lett. 99, 213901 (2007).

    ADS  Google Scholar 

  54. 54

    Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using airy wavepackets. Nature Photon. 2, 675–678 (2008).

    ADS  Google Scholar 

  55. 55

    Baumgartl, J. et al. Optical redistribution of microparticles and cells between microwells. Lab Chip 9, 1334–1336 (2009).

    Google Scholar 

  56. 56

    Baumgartl, J. et al. Optical path clearing and enhanced transmission through colloidal suspensions. Opt. Express 18, 17130–17140 (2010).

    ADS  Google Scholar 

  57. 57

    Alpmann, C., Bowman, R., Woerdemann, M., Padgett, M. & Denz, C. Mathieu beams as versatile light moulds for 3D micro particle assemblies. Opt. Express 18, 26084–26091 (2010).

    ADS  Google Scholar 

  58. 58

    López-Aguayo, S., Kartashov, Y. V., Vysloukh, V. A. & Torner, L. Method to generate complex quasi-non-diffracting optical lattices. Phys. Rev. Lett. 105, 013902 (2010).

    ADS  Google Scholar 

  59. 59

    Uhrig, K. et al. Optical force sensor array in a microfluidic device based on holographic optical tweezers. Lab Chip 9, 661–668 (2009).

    Google Scholar 

  60. 60

    Kress, H. et al. Cell stimulation with optically manipulated microsources. Nature Meth. 6, 905–909 (2009).

    Google Scholar 

  61. 61

    Eriksson, E. O., Engström, D., Scrimgeour, J. & Goksör, M. Automated focusing of nuclei for timelapse experiments on single cells using holographic optical tweezers. Opt. Express 17, 5585–5594 (2009).

    ADS  Google Scholar 

  62. 62

    Kreysing, M. K. et al. The optical cell rotator. Opt. Express 16, 16984–16992 (2008).

    ADS  Google Scholar 

  63. 63

    Burnham, D. R., Wright, G. D., Read, N. D. & McGloin, D. Holographic and single beam optical manipulation of hyphal growth in filamentous fungi. J. Opt. A 9, S172–S179 (2007).

    ADS  Google Scholar 

  64. 64

    Ehrlicher, A. et al. Guiding neuronal growth with light. Proc. Natl Acad. Sci. USA 99, 16024–16028 (2002).

    ADS  Google Scholar 

  65. 65

    Carnegie, D. J., Stevenson, D. J., Mazilu, M., Gunn-Moore, F. J. & Dholakia, K. Guided neuronal growth using optical line traps. Opt. Express 16, 10507–10517 (2008).

    ADS  Google Scholar 

  66. 66

    Carnegie, D. J., Čižmár, T., Baumgartl, J., Gunn-Moore, F. J. & Dholakia, K. Automated laser guidance of neuronal growth cones using a spatial light modulator. J. Biophoton. 2, 682–692 (2009).

    Google Scholar 

  67. 67

    Akselrod, G. M. et al. Laser-guided assembly of heterotypic three-dimensional living cell microarrays. Biophys. J. 91, 3465–3473 (2006).

    ADS  Google Scholar 

  68. 68

    Arneborg, N. et al. Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture. FEMS Microbiol. Lett. 245, 155–159 (2005).

    Google Scholar 

  69. 69

    Leach, J. et al. Manipulation of live mouse embryonic stem cells using holographic optical tweezers. J. Mod. Opt. 56, 448–452 (2009).

    ADS  Google Scholar 

  70. 70

    Rohrbach, A. & Stelzer, E. H. K. Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. Appl. Opt. 41, 2494–2507 (2002).

    ADS  Google Scholar 

  71. 71

    Simpson, N., McGloin, D., Dholakia, K., Allen, L. & Padgett, M. J. Optical tweezers with increased axial trapping efficiency. J. Mod. Opt. 45, 1943–1949 (1998).

    ADS  Google Scholar 

  72. 72

    Reihani, S. N. S. & Oddershede, L. B. Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. Opt. Lett. 32, 1998–2000 (2007).

    ADS  Google Scholar 

  73. 73

    Vermeulen, K. C., Wuite, G. J. L., Stienen, G. J. M. & Schmidt, C. F. Optical trap stiffness in the presence and absence of spherical aberrations. Appl. Opt. 45, 1812–1819 (2006).

    ADS  Google Scholar 

  74. 74

    Roichman, Y., Waldron, A., Gardel, E. & Grier, D. G. Optical traps with geometric aberrations. Appl. Opt. 45, 3425–3429 (2006).

    ADS  Google Scholar 

  75. 75

    Wulff, K. et al. Aberration correction in holographic optical tweezers. Opt. Express 14, 4170–4175 (2006).

    ADS  Google Scholar 

  76. 76

    Theofanidou, E., Wilson, L., Hossack, W. J. & Arlt, J. Spherical aberration correction for optical tweezers. Opt. Commun. 236, 145–150 (2004).

    ADS  Google Scholar 

  77. 77

    Jesacher, A. et al. Wavefront correction of spatial light modulators using an optical vortex image. Opt. Express 15, 5801–5808 (2007).

    ADS  Google Scholar 

  78. 78

    Bowman, R. W., Wright, A. J. & Padgett, M. J. An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers. J. Opt. 12, 124004 (2010).

    ADS  Google Scholar 

  79. 79

    Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Google Scholar 

  80. 80

    Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008).

    ADS  Google Scholar 

  81. 81

    Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature Meth. 7, 141–147 (2010).

    Google Scholar 

  82. 82

    Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

    ADS  Google Scholar 

  83. 83

    Rohrbach, A. Stiffness of optical traps: Quantitative agreement between experiment and electromagnetic theory. Phys. Rev. Lett. 95, 168102 (2005).

    ADS  Google Scholar 

  84. 84

    Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Google Scholar 

  85. 85

    Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

    ADS  Google Scholar 

  86. 86

    Brunner, M. & Bechinger, C. Phase behavior of colloidal molecular crystals on triangular light lattices. Phys. Rev. Lett. 88, 248302 (2002).

    ADS  Google Scholar 

  87. 87

    Mikhael, J., Roth, J., Helden, L. & Bechinger, C. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature 454, 501–504 (2008).

    ADS  Google Scholar 

  88. 88

    Meiners, J. C. & Quake, S. R. Direct measurement of hydrodynamic cress correlations between tow particles in an external potential. Phys. Rev. Lett. 82, 2211–2214 (1999).

    ADS  Google Scholar 

  89. 89

    Di Leonardo, R. et al. Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring. Phys. Rev. E 76, 061402 (2007).

    ADS  Google Scholar 

  90. 90

    Korda, P. T., Spalding, G. C. & Grier, D. G. Evolution of a colloidal critical state in an optical pinning potential landscape. Phys. Rev. B 66, 024504 (2002).

    ADS  Google Scholar 

  91. 91

    Pelton, M., Ladavac, K. & Grier, D. G. Transport and fractionation in periodic potential-energy landscapes. Phys. Rev. E 70, 031108 (2004).

    ADS  Google Scholar 

  92. 92

    MacDonald, M. P., Spalding, G. C. & Dholakia, K. Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003).

    ADS  Google Scholar 

  93. 93

    Paterson, L. et al. Light-induced cell separation in a tailored optical landscape. Appl. Phys. Lett. 87, 123901 (2005).

    ADS  Google Scholar 

  94. 94

    Ladavac, K., Kasza, K. & Grier, D. G. Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation. Phys. Rev. E 70, 010901 (2004).

    ADS  Google Scholar 

  95. 95

    Milne, G., Rhodes, D., MacDonald, M. & Dholakia, K. Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes. Opt. Lett. 32, 1144–1146 (2007).

    ADS  Google Scholar 

  96. 96

    Xiao, K. & Grier, D. G. Sorting colloidal particles into multiple channels with optical forces: Prismatic optical fractionation. Phys. Rev. E 82, 051407 (2010).

    ADS  Google Scholar 

  97. 97

    Xiao, K. & Grier, D. G. Multidimensional optical fractionation of colloidal particles with holographic verification. Phys. Rev. Lett. 104, 028302 (2010).

    ADS  Google Scholar 

  98. 98

    Čižmár, T. et al. Optical sorting and detection of sub-micron objects in a motional standing wave. Phys. Rev. B 74, 035105 (2006).

    ADS  Google Scholar 

  99. 99

    Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003).

    ADS  Google Scholar 

  100. 100

    Tatarkova, S. A., Sibbett, W. & Dholakia, K. Brownian particle in an optical potential of the washboard type. Phys. Rev. Lett. 91, 038101 (2003).

    ADS  Google Scholar 

  101. 101

    Lee, S. H. & Grier, D. G. Giant colloidal diffusivity on corrugated optical vortices. Phys. Rev. Lett. 96, 190601 (2006).

    ADS  Google Scholar 

  102. 102

    Singh, S., Phelps, G. A., Goldbaum, D. S., Wright, E. M. & Meystre, P. All-optical optomechanics: An optical spring mirror. Phys. Rev. Lett. 105, 213602 (2010).

    ADS  Google Scholar 

  103. 103

    Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

    ADS  Google Scholar 

  104. 104

    McGloin, D. et al. Optical manipulation of airborne particles: techniques and applications. Faraday Discuss. 137, 335–350 (2008).

    ADS  Google Scholar 

  105. 105

    Svoboda, K. & Block, S. M. Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930–932 (1994).

    ADS  Google Scholar 

  106. 106

    Jauffred, L., Richardson, A. C. & Oddershede, L. B. Three-dimensional optical control of individual quantum dots. Nano Lett. 8, 3376–3380 (2008).

    ADS  Google Scholar 

  107. 107

    Burnham, D. R. & McGloin, D. Holographic optical trapping of aerosol droplets. Opt. Express 14, 4175–4181 (2006).

    ADS  Google Scholar 

  108. 108

    Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

    ADS  Google Scholar 

  109. 109

    Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    ADS  Google Scholar 

  110. 110

    Montes-Usategui, M., Pleguezuelos, E., Andilla, J. & Martín-Badosa, E. Fast generation of holographic optical tweezers by random mask encoding of Fourier components. Opt. Express 14, 2101–2107 (2006).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the UK Engineering and Physical Sciences Research Council for funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K Dholakia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dholakia, K., Čižmár, T. Shaping the future of manipulation. Nature Photon 5, 335–342 (2011). https://doi.org/10.1038/nphoton.2011.80

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing