Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers

Abstract

In principle, optical phase-sensitive amplifiers are known to be capable of realizing noiseless amplification, as well as improving the signal-to-noise-ratio of optical links by 3 dB compared to conventional, phase-insensitively amplified links. However, current state-of-the-art phase-sensitive amplifiers are still far from being practical, lacking, for example, significant noise performance improvement, broadband gain and modulation-format transparency. Here, we demonstrate experimentally, for the first time, an optical-fibre-based non-degenerate phase-sensitive amplifier link consisting of a phase-insensitive parametric copier followed by a phase-sensitive amplifier that provides broadband amplification, signal modulation-format independence, and nearly 6 dB link noise-figure improvement over conventional, erbium-doped fibre amplifier-based links. The PSA has a record-low 1.1 dB noise figure, and can be extended to work with multiple wavelength channels with modest system complexity. This concept can also be realized in other materials with third-order nonlinearities, and is useful in any attenuation-limited optical link.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic principle of a copier–PSA amplified link.
Figure 2: Experimental set-up.
Figure 3: PSA characterization in a copier–PSA configuration.
Figure 4: Benefits of a copier–PSA amplified link.
Figure 5: BER tests of three-channel, 10 Gbaud DQPSK data.

Similar content being viewed by others

References

  1. Zavatta, A., Fiurášek, J. & Bellini, M. A high-fidelity noiseless amplifier for quantum light states. Nature Photon. 5, 52–60 (2011), and references therein.

    Article  ADS  Google Scholar 

  2. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  ADS  Google Scholar 

  3. Mears, R. J., Reekie, L. I., Jauncey, M. & Payne, D. N. Low-noise erbium-doped fibre amplifier operating at 1.54 µm. Electron. Lett. 23, 1026–1028 (1987).

    Article  Google Scholar 

  4. Islam, M. N. Raman amplifiers for telecommunications. IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).

    Article  ADS  Google Scholar 

  5. Connelly, M. A. Semiconductor Optical Amplifiers (Kluwer, 2002).

    Google Scholar 

  6. Desuvire, E. Erbium-Doped Fiber Amplifiers Ch. 2 (John Wiley & Sons, 1994).

    Google Scholar 

  7. Loudon, R. Theory of noise accumulation in linear optical-amplifier chains. IEEE J. Quantum Electron. 21, 766–773 (1985).

    Article  ADS  Google Scholar 

  8. Levenson, J. A., Abram, I. & Rivera, Th. Reduction of quantum noise in optical parametric amplification. J. Opt. Soc. Am. B 10, 2233–2238 (1993).

    Article  ADS  Google Scholar 

  9. Levenson, J. A., Bencheikh, K., Lovering, D. J., Vidakovic, P. & Simonneau, C. Quantum noise in optical parametric amplification: a means to achieve noiseless optical functions. Quantum Semiclass. Opt. 9, 221–237 (1997).

    Article  ADS  Google Scholar 

  10. Choi, S.-K., Vasilyev, M. & Kumar, P. Noiseless optical amplification of images. Phys. Rev. Lett. 83, 1938–1941 (1999).

    Article  ADS  Google Scholar 

  11. Marhic, M. E., Hsia, C. H. & Jeong, J. M. Optical amplification in a nonlinear fibre interferometer. Electron. Lett. 27, 210–211 (1991).

    Article  ADS  Google Scholar 

  12. Imajuku, W., Takada, A. & Yamabayashi, Y. Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier. Electron. Lett. 35, 1954–1955 (1999).

    Article  Google Scholar 

  13. Imajuku, W., Takada, A. & Yamabayashi, Y. Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit. Electron. Lett. 36, 63–64 (2000).

    Article  Google Scholar 

  14. Croussore, K. & Li, G. Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification. IEEE Photon. Technol. Lett. 19, 864–866 (2007).

    Article  ADS  Google Scholar 

  15. Bar-Joseph, I., Friesem, A. A., Waarts, A. G. & Yaffe, H. H. Parametric interaction of a modulated wave in a single-mode fiber. Opt. Lett. 11, 534–536 (1986).

    Article  ADS  Google Scholar 

  16. Tang, R., Devgan, P., Voss, P. L., Grigoryan, V. S. & Kumar, P. In-line frequency-nondegenerate phase-sensitive fiber-optical parametric amplifier. IEEE Photon. Technol. Lett. 17, 1845–1847 (2005).

    Article  ADS  Google Scholar 

  17. Lim, O. K., Grigoryan, V. S., Shin, M. & Kumar, P. Ultra-low-noise inline fiber-optic phase-sensitive amplifier for analog optical signals, in Proceedings of the Optical Fiber Communications Conference (OFC/NFOEC 2008), San Diego, USA, paper OML3 (2008).

  18. Lee, K. J. et al. Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide. Opt. Express 17, 20393–20400 (2009).

    Article  ADS  Google Scholar 

  19. McKinstrie, C. J. & Radic, S. Phase-sensitive amplification in a fiber. Opt. Express 20, 4973–4979 (2004).

    Article  ADS  Google Scholar 

  20. Tang, R., Devgan, P., Grigoryan, V. S. & Kumar, P. Inline frequency-non-degenerate phase-sensitive fibre parametric amplifier for fibre-optic communication. Electron. Lett. 41, 1072–1074 (2005).

    Article  Google Scholar 

  21. Tang, R. et al. Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input. Opt. Express 13, 10483–10493 (2005).

    Article  ADS  Google Scholar 

  22. Kakande, J. et al. Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation. Opt. Express 18, 4130–4137 (2010).

    Article  ADS  Google Scholar 

  23. Tang, R., Devgan, P. S., Grigoryan, V. S., Kumar, P. & Vasilyev, M. In-line phase-sensitive amplification of multi-channel CW signals based on frequency non-degenerate four-wave-mixing in fiber. Opt. Express 16, 9046–9053 (2008).

    Article  ADS  Google Scholar 

  24. Slavík, R. et al. All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nature Photon. 4, 690–695 (2010).

    Article  ADS  Google Scholar 

  25. Lundström, C., Puttnam, B., Tong, Z., Karlsson, M. & Andrekson, P. A. Experimental characterization of the phase squeezing property of a phase-sensitive parametric amplifiers in non-degenerate idler configuration, in Proceedings of the European Conference on Optical Communications (ECOC 2010), Turin, Italy, paper Th.10.C1 (2010).

  26. Winzer, P. J. Modulation and multiplexing in optical communication systems. IEEE LEOS Newsletter 23, 1–10 (2009).

    Google Scholar 

  27. Tong, Z., McKinstrie, C. J., Lundström, C., Karlsson, M. & Andrekson, P. A. Noise performance of optical fiber transmission links that use non-degenerate cascaded phase-sensitive amplifiers. Opt. Express 18, 15426–15439 (2010).

    Article  ADS  Google Scholar 

  28. McKinstrie, C. J., Karlsson, M. & Tong, Z. Field-quadrature and photon-number correlations produced by parametric process. Opt. Express 18, 19792–19823 (2010).

    Article  ADS  Google Scholar 

  29. McKinstrie, C. J., Yu, M., Raymer, M. G. & Radic, S. Quantum noise properties of parametric processes. Opt. Express 13, 4986–5012 (2005).

    Article  ADS  Google Scholar 

  30. Vasilyev, M. V. Distributed phase-sensitive amplification. Opt. Express 13, 7563–7571 (2005).

    Article  ADS  Google Scholar 

  31. Sharping, J. E., Fiorentino, M. & Kumar, P. Observation of twin-beam-type quantum correlation in optical fiber. Opt. Lett. 26, 367–369 (2001).

    Article  ADS  Google Scholar 

  32. Tong, Z, et al. Modeling and measurement of the noise figure of a cascaded non-degenerate phase-sensitive parametric amplifier. Opt. Express 18, 14820–14835 (2010).

    Article  ADS  Google Scholar 

  33. Liu, X., Osgood, R. M. Jr, Vlasov, Y. A. & Green, W. M. J. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nature Photon. 4, 557–560 (2010).

    Article  ADS  Google Scholar 

  34. Zlatanovic, S. et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source. Nature Photon. 4, 561–564 (2010).

    Article  ADS  Google Scholar 

  35. Korotky, S. K., Hansen, P. B., Eskildsen, L. & Veselka, J. J. Efficient phase modulation scheme for suppressing stimulated Brillouin scattering, in Tech. Dig. Int. Conf. Integrated Optics and Optical Fiber Communications (IOOC 1995), Hong Kong, paper WD2–1 (1995).

  36. Baxter, G. et al. Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements, in Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC 2009), San Diego, USA, paper OTuF2 (2009).

  37. Tong, Z., Bogris, A., Karlsson, M. & Andrekson, P. A. Full characterization of the signal and idler noise figure spectra in single-pump fiber optical parametric amplifiers. Opt. Express 18, 2884–2893 (2010).

    Article  ADS  Google Scholar 

  38. Tang, R., Voss, P. L., Lasri, J., Devgan, P. & Kumar, P. Noise-figure limit on fiber-optical parametric amplifiers and wavelength converters: experimental investigation. Opt. Lett. 29, 2372–2374 (2004).

    Article  ADS  Google Scholar 

  39. Bogris, A., Syvridis, D. & Efstathiou, C. Noise properties of degenerate dual pump phase sensitive amplifiers. J. Lightwave Technol. 28, 1209–1217 (2010).

    Article  ADS  Google Scholar 

  40. Jamshidifar, M., Vedadi, A. & Marhic, M. Continuous-wave one-pump fiber optical parametric amplifier with 270 nm gain bandwidth, in Proceedings of the European Conference on Optical Communications (ECOC 2009), Austria, Vienna, paper Mo. 1.1.4 (2009).

  41. Tong, Z., Lundström, C., Tipsuwannakul, E., Karlsson, M. & Andrekson, P. A. Phase-sensitive amplified DWDM DQPSK signals using free-running lasers with 6-dB link SNR improvement over EDFA-based systems, in Proceedings of the European Conference on Optical Communications (ECOC 2010), Turin, Italy, postdeadline paper PDP1.3 (2010).

  42. Weerasuriya, R. et al. Generation of frequency symmetric signals from a BPSK input for phase sensitive amplification, in Proceedings of the Optical Fiber Communications Conference (OFC/NFOEC 2010), San Diego, USA, paper OWT6 (2010).

  43. Hidayat, A. et al. High-speed endless optical polarization stabilization using calibrated wave plates and field-programmable gate array-based digital controller. Opt. Express 16, 18984–18991 (2008).

    Article  ADS  Google Scholar 

  44. Roelens, M. A. F. et al. Dispersion trimming in a reconfigurable wavelength selective switch. J. Lightwave Technol. 26, 73–78 (2008).

    Article  ADS  Google Scholar 

  45. Cardenas, J. et al. Wide-bandwidth continuously tunable optical delay line using silicon microring resonators. Opt. Express 18, 26525–26534 (2010).

    Article  ADS  Google Scholar 

  46. Grüner-Nielsen, L. et al. A silica based highly nonlinear fibre with improved threshold for stimulated Brillouin scattering, in Proceedings of the European Conference on Optical Communications (ECOC 2010), Turin, Italy, paper Tu.4.D.3 (2010).

  47. Tang, J. The Shannon channel capacity of dispersion-free nonlinear optical fiber transmission. J. Lightwave Technol. 19, 1104–1109 (2001).

    Article  ADS  Google Scholar 

  48. Essiambre, R.-J., Foschini, G. J., Kramer, G. & Winzer, P. J. Capacity limits of information transport in fiber-optic networks. Phys. Rev. Lett. 101, 163901 (2008).

    Article  ADS  Google Scholar 

  49. Kalogerakis, G., Marhic, M., Wong, K. K. Y. & Kazovsky, L. G. Transmission of optical communication signals by distributed parametric amplification. J. Lightwave Technol. 23, 2945–2953 (2005).

    Article  ADS  Google Scholar 

  50. Movassaghi, M., Jackson, M. K., Smith, V. M. & Hallam, W. J. Noise figure of erbium-doped fiber amplifiers in saturated operation. J. Lightwave Technol. 16, 1461–1465 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Communities 7th Framework Programme (FP/2007-2013, grant agreement 22454, STREP PHASORS), and also from the Air Force Office of Scientific Research, Air Force Material Command, USAF (grant no. FA8655-09-1-3076). The authors would like to thank M. Vasilyev, A. Bogris, J. Kakande and A. Ellis for helpful discussions, P.-O. Hedekvist for help with the measurement error analysis and Sumitomo Corporation for providing the copier HNLF.

Author information

Authors and Affiliations

Authors

Contributions

Z.T. and C.L. jointly designed and built the PSA set-up. P.A.A. coordinated the experiments and provided overall technical leadership. C.J.M., Z.T. and M.K. contributed to the theoretical part. Z.T. carried out the PSA characterizations. D.J.B. and E.T. built the transmitter and receiver for BER tests, and Z.T., D.J.B. and E.T. performed BER measurements. B.J.P. and H.T. contributed to the design and implementation of the phase-locking loop. L.G.-N. provided and characterized the highly nonlinear fibres used in the PSA. Z.T., P.A.A., C.L., M.K., C.J.M. and D.J.B. jointly wrote the paper.

Corresponding author

Correspondence to Z. Tong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, Z., Lundström, C., Andrekson, P. et al. Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nature Photon 5, 430–436 (2011). https://doi.org/10.1038/nphoton.2011.79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing