Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comb-based radiofrequency photonic filters with rapid tunability and high selectivity

Abstract

Photonic technologies have received considerable attention regarding the enhancement of radiofrequency electrical systems, including high-frequency analogue signal transmission, control of phased arrays, analog-to-digital conversion and signal processing. Although the potential of radiofrequency photonics for the implementation of tunable electrical filters over broad radiofrequency bandwidths has been much discussed, the realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for radiofrequency photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability and bandwidth reconfiguration. In one configuration, tuning of the radiofrequency passband frequency is demonstrated with unprecedented (40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes the comb spectra, resulting in Gaussian radiofrequency filter lineshapes exhibiting an extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative operation of an optical frequency comb-based multi-tap RF photonic filter.
Figure 2: Achieving rapid electronic frequency tunability of the RF filter using a dual-comb approach.
Figure 3: Rapid frequency tunability of the RF filter.
Figure 4: Demonstration of the bandwidth tunability of the RF filter.
Figure 5: Direct, high-accuracy generation of Gaussian apodized broadband combs.
Figure 6: Achieving high stop-band attenuation RF filters.

Similar content being viewed by others

References

  1. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  2. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  3. Ma, L. S. et al. Optical frequency synthesis and comparison with uncertainty at the 10−19 level. Science 303, 1843–1845 (2004).

    Article  ADS  Google Scholar 

  4. Ye, J. & Cundiff, S. T. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).

    Book  Google Scholar 

  5. Newbury, N. R. Searching for applications with a fine-tooth comb. Nature Photon. 5, 186–188 (2011).

    Article  ADS  Google Scholar 

  6. Delfyett, P. J. et al. Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications. J. Lightwave Technol. 24, 2701–2719 (2006).

    Article  ADS  Google Scholar 

  7. Ellis, A. D. & Gunning, F. C. G. Spectral density enhancement using coherent WDM. IEEE Photon. Technol. Lett. 17, 504–506 (2005).

    Article  ADS  Google Scholar 

  8. Yamazaki, E., Inuzuka, F., Yonenaga, K., Takada, A. & Koga, M. Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system. IEEE Photon. Technol. Lett. 19, 9–11 (2007).

    Article  ADS  Google Scholar 

  9. Jiang, Z., Huang, C.-B., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photon. 1, 463–467 (2007).

    Article  ADS  Google Scholar 

  10. Fontaine, N. K. et al. Real-time full-field arbitrary optical waveform measurement. Nature Photon. 4, 248–254 (2010).

    Article  ADS  Google Scholar 

  11. Cundiff, S. T. & Weiner, A. M. Optical arbitrary waveform generation. Nature Photon. 4, 760–766 (2010).

    Article  ADS  Google Scholar 

  12. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nature Photon. 5, 425–429 (2011).

    Article  ADS  Google Scholar 

  13. Huang, C. B., Leaird, D. E. & Weiner, A. M. Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions. Opt. Lett. 32, 3242–3244 (2007).

    Article  ADS  Google Scholar 

  14. Hamidi, E., Leaird, D. E. & Weiner, A. M. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans. Microwave Theory Tech. 58, 3269–3278 (2010).

    Article  ADS  Google Scholar 

  15. Ohara, T. et al. Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source, J. Lightwave Technol. 24, 2311–2317 (2006).

    Article  ADS  Google Scholar 

  16. Wu, R., Supradeepa, V. R., Long, C. M., Leaird, D. E. & Weiner, A. M. Generation of very flat optical frequency combs from continuouswave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35, 3234–3236 (2010).

    Article  ADS  Google Scholar 

  17. Seeds, A. J. & Williams, K. J. Microwave photonics. J. Lightwave Technol. 24, 4628–4641 (2006).

    Article  ADS  Google Scholar 

  18. Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nature Photon. 1, 319–330 (2007).

    Article  ADS  Google Scholar 

  19. Yao, J. P. Microwave photonics. J. Lightwave Technol. 27, 314–335 (2009).

    Article  ADS  Google Scholar 

  20. Haykin, S. Cognitive radio: brain-empowered wireless communications. IEEE J. Select. Areas Commun. 23, 201–220 (2005).

    Article  Google Scholar 

  21. Akyildiz, I. F., Lee, W. Y., Vuran, M. C. & Mohanty, S. Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput. Networks 50, 2127–2159 (2006).

    Article  Google Scholar 

  22. Minasian, R. A. Photonic signal processing of microwave signals. IEEE Trans. Microwave Theory Tech. 54, 832–846 (2006).

    Article  ADS  Google Scholar 

  23. Capmany, J., Ortega, B., Pastor, D. & Sales, S. Discrete-time optical processing of microwave signals. J. Lightwave Technol. 23, 702–723 (2005).

    Article  ADS  Google Scholar 

  24. Rebeiz, G. M. RF MEMS: Theory, Design, and Technology (John Wiley & Sons, 2003).

    Book  Google Scholar 

  25. Park, S. J., Reines, I., Patel, C. & Rebeiz, G. M. High-Q RF-MEMS 4–6-GHz tunable evanescent-mode cavity filter. IEEE Trans. Microwave Theory Tech. 58, 381–389 (2010).

    Article  ADS  Google Scholar 

  26. Liu, X., Katehi, L. P. B., Chappell, W. J. & Peroulis, D. High-Q tunable microwave cavity resonators and filters using SOI-based RF MEMS tuners. IEEE J. Microelectromesh. Syst. 19, 774–784 (2010).

    Article  Google Scholar 

  27. Savchenkov, A. A. et al. RF photonic signal processing components: from high order tunable filters to high stability tunable oscillators. Proceedings of the 2009 IEEE Radar Conference 1, 1–6 (2009).

    Google Scholar 

  28. Ilchenko, V. & Maleki, L. Tunable radio frequency and microwave photonic filters. US patent 7,813,651 B2 (2010).

  29. Madsen, C. K. & Zhao, J. H. Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

    Book  Google Scholar 

  30. Harris, F. J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66, 51–83 (1978).

    Article  ADS  Google Scholar 

  31. Oppenheim, A. V. & Schafer, R. W. Discrete-Time Signal Processing, 3rd edn (Prentice-Hall, 2009).

    MATH  Google Scholar 

  32. Ortigosa-Blanch, A., Mora, J., Capmany, J., Ortega, B. & Pastor, D. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser. Opt. Lett. 31, 709–711 (2006).

    Article  ADS  Google Scholar 

  33. Mora, J., Ortigosa-Blanch, A., Pastor, D. & Capmany, J. Tunable microwave photonic filter free from baseband and carrier suppression effect not requiring single sideband modulation using a Mach–Zehnder configuration. Opt. Express 14, 7960–7965 (2006).

    Article  ADS  Google Scholar 

  34. Lee, J. H., Chang, Y. M., Han, Y. G., Lee, S. B. & Chung, H. Y. Fully reconfigurable photonic microwave transversal filter based on digital micromirror device and continuous-wave, incoherent supercontinuum source. Appl. Opt. 46, 5158–5167 (2007).

    Article  ADS  Google Scholar 

  35. Chan, E. H. W. & Minasian, R. A. Coherence-free high-resolution RF/microwave photonic bandpass filter with high skirt selectivity and high stopband attenuation. J. Lightwave Tech. 28, 1646–1651 (2010).

    Article  ADS  Google Scholar 

  36. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  37. Azaña, J., Berger, N. K., Levit, B. & Fischer, B. Spectro-temporal imaging of optical pulses with a single time lens. IEEE Photon. Technol. Lett. 16, 882–884 (2004).

    Article  ADS  Google Scholar 

  38. Torres-Company, V., Lancis, J. & Andrés, P. Lossless equalization of frequency combs. Opt. Lett. 33, 1822–1824 (2008).

    Article  ADS  Google Scholar 

  39. Sagues, M., Loayssa, A. & Capmany, J. Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett. 19, 1194–1196 (2007).

    Article  ADS  Google Scholar 

  40. Yan, Y. & Yao, J. A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter. IEEE Photon. Technol. Lett. 19, 1472–1474 (2007).

    Article  ADS  Google Scholar 

  41. Devgan, P. et al. Highly efficient multichannel wavelength conversion of DPSK signals. J. Lightwave Technol. 24, 3677–3682 (2006).

    Article  ADS  Google Scholar 

  42. Bres, C. S., Alic, N., Myslivets, E. & Radic, S. Scalable multicasting in one-pump parametric amplifier. J. Lightwave Technol. 27, 356–363 (2009).

    Article  ADS  Google Scholar 

  43. Ackerman, E. I. et al. Signal-to-noise performance of two analog photonic links using different noise reduction techniques. Proceedings of the International Microwave Symposium 51–54 (2007).

  44. McKinney, J. D. et al. Sub-10-dB noise figure in a multiple-GHz analog optical link. IEEE Photon. Technol. Lett. 19, 465–467 (2007).

    Article  ADS  Google Scholar 

  45. McKinney, J. D. & Williams, K. J. Sampled analog optical Links, IEEE Trans. Microwave Theory Tech. 57, 2093–2099 (2009).

    Article  ADS  Google Scholar 

  46. McKinney, J. D., Briguglio J. & Urick V. J. Optical comb sources for suppression of stimulated Brillouin scattering in long-haul analog photonic links. Proceedings of CLEO CFH2, Baltimore, MD (2011).

    Google Scholar 

  47. Ma, Y. et al. 1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access. Proceedings of the National Fiber Optic Engineers Conference PDPC1, San Diego, CA (2009).

    Google Scholar 

  48. Heck, M. J. R. & Bowers, J. E., Integrated Fourier-domain mode-locked lasers: analysis of a novel coherent WDM comb laser. Proceedings of OFC JThA31, Los Angeles, CA (2011).

    Google Scholar 

  49. Smith, G. H., Novak, D. & Zaheer, A. Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Trans. Microwave Theory Tech. 45, 1410–1415 (1997).

    Article  ADS  Google Scholar 

  50. Supradeepa, V. R. & Weiner, A. M. A broadband, spectrally flat, high rep-rate frequency comb: bandwidth scaling and flatness enhancement of phase modulated CW through cascaded four-wave mixing. Preprint at http://arXiv:1010.2527 (2010).

Download references

Acknowledgements

This project was supported in part by the Naval Postgraduate School (grant no. N00244-09-1-0068) under the National Security Science and Engineering Faculty Fellowship programme. Any opinion, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the sponsors. The authors thank V. Torres-Company, J. McKinney and D. Peroulis for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.M.L., R.W. and F.F. performed rapid tuning experiments, with assistance from E.H. V.R.S. and R.W. performed cascaded four-wave mixing experiments. R.W. performed bandwidth reconfiguration experiments with assistance from D.E.L. The project was organized and coordinated by A.M.W. A.M.W. led the writing of the manuscript, with contributions from V.R.S., C.M.L., R.W. and D.E.L.

Corresponding author

Correspondence to Andrew M. Weiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Supradeepa, V., Long, C., Wu, R. et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nature Photon 6, 186–194 (2012). https://doi.org/10.1038/nphoton.2011.350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing