Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements


X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1,2,3,4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Femtosecond X-ray diffraction from Photosystem I nanocrystals.
Figure 2: Dynamics of exploding crystals.
Figure 3: Self-terminating Bragg diffraction.
Figure 4: Bragg termination observed at approximately constant X-ray pulse fluence I0T.
Figure 5: Dynamic disorder factor at atomic resolution.


  1. Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

    ADS  Article  Google Scholar 

  2. Neutze, R. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    ADS  Article  Google Scholar 

  3. Chapman, H. N. et al. Femtosecond time-delay X-ray holography. Nature 448, 676–679 (2007).

    ADS  Article  Google Scholar 

  4. Hau-Riege, S. P. et al. Subnanometer-scale measurements of the interaction of ultrafast soft X-ray free-electron-laser pulses with matter. Phys. Rev. Lett. 98, 145502 (2007).

    ADS  Article  Google Scholar 

  5. Emma, P. et al. First lasing and operation of an Ångstrom wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

    ADS  Article  Google Scholar 

  6. Bergh, M., Timneanu, N. & van der Spoel, D. Model for the dynamics of a water cluster in an X-ray free electron laser beam. Phys. Rev. E 70, 051904 (2004).

    ADS  Article  Google Scholar 

  7. Caleman, C. et al. On the feasibility of nanocrystal imaging using intense and ultrashort X-ray pulses. ACS Nano 5, 139–146 (2011).

    Article  Google Scholar 

  8. Hau-Riege, S. P., London, R. A., Chapman, H. N. & Bergh, M. Soft-X-ray free-electron-laser interaction with materials. Phys. Rev. E 76, 046403 (2007).

    ADS  Article  Google Scholar 

  9. Hau-Riege, S. P., London, R. A. & Szoke, A. Dynamics of biological molecules irradiated by short X-ray pulses. Phys. Rev. E 69, 051906 (2002).

    ADS  Article  Google Scholar 

  10. Gnodtke, C., Saalmann, U. & Rost, J. M. Ionization and charge migration through strong internal fields in clusters exposed to intense X-ray pulses. Phys. Rev. A 79, 041201 (2009).

    ADS  Article  Google Scholar 

  11. Bergh, M., Huldt, G., Timneanu, N., Maia, F. R. N. C. & Hajdu, J. Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction. Q. Rev. Biophys. 41, 181–204 (2008).

    Article  Google Scholar 

  12. Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).

    ADS  Article  Google Scholar 

  13. Owen, R. L., Rudino-Pinera, E. & Garman, E. F. Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc. Natl Acad. Sci. USA 103, 4912–4917 (2006).

    ADS  Article  Google Scholar 

  14. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    Article  Google Scholar 

  15. Holton, J. M. A beginner's guide to radiation damage. J. Synchr. Rad. 16, 133–142 (2009).

    Article  Google Scholar 

  16. Hau-Riege, S. P. X-ray atomic scattering factors of low-z ions with a core hole. Phys. Rev. A 76, 042511 (2007).

    ADS  Article  Google Scholar 

  17. Quiney, H. M. & Nugent, K. A. Biomolecular imaging and electronic damage using X-ray free-electron lasers. Nature Phys. 7, 142–146 (2011).

    ADS  Article  Google Scholar 

  18. Warren, B. E. X-Ray Diffraction 229 (Dover, 1990).

    Google Scholar 

  19. Scott, H. A. Cretin—a radiative transfer capability for laboratory plasmas. J. Quant. Spect. Radiat. Transf. 71, 689–701 (2001).

    ADS  Article  Google Scholar 

  20. Young, L. et al. Femtosecond electronic response of atoms to ultra intense X-rays. Nature 466, 56–61 (2010).

    ADS  Article  Google Scholar 

  21. Bozek, J. D. AMO instrumentation for the LCLS X-ray FEL. Euro. Phys. J. Special Topics 169, 129–132 (2009).

    ADS  Article  Google Scholar 

  22. Strüder, L. et al. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl. Instrum. Meth. Phys. Res. A 614, 483–496 (2010).

    ADS  Article  Google Scholar 

  23. DePonte, D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D 41, 195505 (2008).

    ADS  Article  Google Scholar 

  24. Kirian, R. et al. Femtosecond protein nanocrystallography—data analysis methods. Opt. Express 18, 5713–5723 (2010).

    ADS  Article  Google Scholar 

  25. Caleman, C. et al.: Simulations of radiation damage in biomolecular nanocrystals induced by femtosecond X-ray pulses. J. Mod. Opt. 58, 1486–1497 (2011).

    ADS  Article  Google Scholar 

  26. Andreasson, J. et al. Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft-X-ray laser. Phys. Rev. E 83, 016403 (2011).

    ADS  Article  Google Scholar 

Download references


Experiments were carried out at the Linac Coherent Light Source national user facilities operated by Stanford University on behalf of the US Department of Energy (DOE), Office of Basic Energy Sciences. The authors acknowledge support from the Helmholtz Association, the Max Planck Society for funding the development and operation of the CAMP instrument within the ASG at CFEL, the DOE through the PULSE Institute at the SLAC National Accelerator Laboratory, and the Lawrence Livermore National Laboratory (contract DE-AC52-07NA27344), the US National Science Foundation (awards 0417142 and MCB-1021557), the US National Institutes of Health (awards 1R01GM095583-01 (ROADMAP) and 1U54GM094625-01 (PSI:Biology)), the Joachim Herz Stiftung and the Swedish Research Council. The authors also thank the staff of the LCLS for their support in carrying out these experiments, and D. van der Spoel for providing computational resources.

Author information

Authors and Affiliations



H.N.C., J.C.H.S., A.B. and P.F. conceived the experiment, which was designed with T.A.W., R.A.K., J.S., D.D.P., U.W., R.B.D., S.Bo., M.J.B., D.S., I.S., S.M. and J.H. The CAMP instrument was the responsibility of S.W.E., R.H., D.R., A.R., L.F., N.K., P.H., B.R., B.E., A.H., Ch.R., G.W., L.S., G.H., H.G., J.U., I.S., H.So., H.H., L.G., H.G. and C.W., who operated the pnCCD detectors. C.B., J.B. and M.M. set up and aligned the beamline. P.F., M.S.H. and I.G. prepared samples. R.B.D., D.D.P., U.W., J.C.H.S., P.F., L.L. and R.L.S. developed and operated the sample delivery system. H.N.C., A.B., A.A., J.S., D.P.P., U.W., R.B.D., S.Ba., M.J.B., L.G., J.H., M.M.S., N.T., J.A., S.St. and J.C.H.S. developed diffraction instrumentation. M.B., M.L., A.B. and K.N. designed and/or fabricated calibration samples. H.N.C., J.C.H.S., P.F., A.B., T.A.W., R.A.K., C.C., A.A., L.L., J.S., D.P.D., U.W., R.B.D., I.S., N.C., R.L.S., M.S.H., M.B., S.W.E., R.H., D.R., A.R., S.K., T.E., M.L., C.B., J.U., L.F., J.D.B., M.M., M.F., C.Y.H., R.G.S., G.J.W., A.R., M.S., O.J., I.A. and J.H. carried out the experiment. A.B, C.C., N.T. and H.N.C. developed the theory, and analysed the data with L.L., T.A.W., I.S. and T.R.M.B. N.T., C.C. and H.S. carried out the Cretin simulations. A.B., C.C. and H.N.C. wrote the manuscript with discussion and improvements from all authors.

Corresponding authors

Correspondence to Anton Barty or Henry N. Chapman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1655 kb)

Supplementary information

Supplementary Movie (MOV 162913 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barty, A., Caleman, C., Aquila, A. et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nature Photon 6, 35–40 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing