Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plasmonic generation of ultrashort extreme-ultraviolet light pulses

Abstract

Ultrashort extreme-ultraviolet pulses are a key tool in time-resolved spectroscopy for the investigation of electronic motion in atoms1,2, molecules3 and solids4. High-harmonic generation is a well-established process for producing ultrashort extreme-ultraviolet pulses by direct frequency upconversion of femtosecond near-infrared pulses5,6,7. However, elaborate pump–probe experiments performed on the attosecond timescale8,9 require continuous efforts to improve the spatiotemporal coherence and also the repetition rate of the generated pulses. Here, we demonstrate a three-dimensional metallic waveguide for the plasmonic generation of ultrashort extreme-ultraviolet pulses by means of field enhancement using surface-plasmon polaritons. The intensity enhancement factor reaches a peak of 350, allowing generation up to the 43rd harmonic in xenon gas, with a modest incident intensity of 1 × 1011 W cm–2. The pulse repetition rate is maintained as high as 75 MHz without external cavities. The plasmonic waveguide is fabricated on a cantilever microstructure and is therefore suitable for near-field spectroscopy with nanometre-scale lateral selectivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Plasmonic nanofocusing of femtosecond NIR light pulses for high-harmonic generation of coherent ultrashort EUV pulses using a metallic waveguide.
Figure 2: Computation of the enhanced electric field inside the waveguide by adopting a FDTD method.
Figure 3: Waveguide fabrication on the tip of a cantilever microstructure using the FIB process.
Figure 4: Experimental results.

References

  1. 1

    Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).

    ADS  Article  Google Scholar 

  2. 2

    Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    ADS  Article  Google Scholar 

  3. 3

    Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    ADS  Article  Google Scholar 

  4. 4

    Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Article  Google Scholar 

  6. 6

    Popmintchev, T., Chen, M.-C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nature Photon. 4, 822–832 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    ADS  Article  Google Scholar 

  8. 8

    Krischek, R. et al. Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments. Nature Photon. 4, 170–173 (2010).

    ADS  Article  Google Scholar 

  9. 9

    Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    ADS  Article  Google Scholar 

  10. 10

    Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Article  Google Scholar 

  11. 11

    Stockman, M. I. Nanoplasmonics: the physics behind the applications. Phys. Today. 64, 39–44 (2011).

    Article  Google Scholar 

  12. 12

    Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides, Phys. Rev. Lett. 93, 137404 (2004).

    ADS  Article  Google Scholar 

  13. 13

    Babajanyan, A. J., Margaryan, N. L. & Nerkararyan, K. V. Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 87, 3785–3788 (2000).

    ADS  Article  Google Scholar 

  14. 14

    Gramotnev, D. K., Vogel, M. W. & Stockman, M. I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J. Appl. Phys. 104, 034311 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Verhagen, E., Polman, A. & Kuipers, L. Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express 16, 45–57 (2008).

    ADS  Article  Google Scholar 

  16. 16

    Verhagen, E., Spasenovic, M., Polman, A. & Kuipers, L. Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102, 203904 (2009).

    ADS  Article  Google Scholar 

  17. 17

    De Angelis, F. et al. A hybrid plasmonic–photonic nanodevice for label-free detection of a few molecules. Nano Lett. 8, 2321–2327 (2008).

    ADS  Article  Google Scholar 

  18. 18

    De Angelis, F. et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nature Nanotech. 5, 67–72 (2010).

    ADS  Article  Google Scholar 

  19. 19

    Ropers, C. et al. Grating-coupling of surface plasmons onto metallic tips: a nano-confined light source. Nano Lett. 7, 2784–2788 (2007).

    ADS  Article  Google Scholar 

  20. 20

    Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Mühlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    ADS  Article  Google Scholar 

  22. 22

    Choi, H., Pile, D. F., Nam, S., Bartal, G. & Zhang, X. Compressing surface plasmons for nano-scale optical focusing. Opt. Express 17, 7519–7524 (2009).

    ADS  Article  Google Scholar 

  23. 23

    Novotny, L. & Hafner, C. Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys. Rev. E. 50, 4094–4106 (1994).

    ADS  Article  Google Scholar 

  24. 24

    Ginzburg, P., Arbel, D. & Orenstein, M. Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing. Opt. Lett. 31, 3288–3290 (2006).

    ADS  Article  Google Scholar 

  25. 25

    Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data. Nucl. Data. Tables 54, 181–342 (1993).

    ADS  Article  Google Scholar 

  26. 26

    Kathuria, Y. P. Fresnel and far-field diffraction due to an elliptical aperture. J. Opt. Soc. Am. A 2, 852–857 (1985).

    ADS  Article  Google Scholar 

  27. 27

    Kim, S. et al. High harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    ADS  Article  Google Scholar 

  28. 28

    Gai, H., Wang, J. & Tian, Q. Modified Debye model parameters of metals applicable for broadband calculations. Appl. Opt. 46, 2229–2233 (2007).

    ADS  Article  Google Scholar 

  29. 29

    Vamvakas, V. Em., Vourdas, N. & Gardelis, S. Optical characterization of Si-rich silicon nitride films prepared by low pressure chemical vapour deposition. Microelectron. Reliab. 47, 794–797 (2007).

    Article  Google Scholar 

  30. 30

    Kornilov, O., Wilcox, R. & Gessner, O. Nanograting-based compact vacuum ultraviolet spectrometer and beam profiler for in situ characterization of high-order harmonic generation light sources. Rev. Sci. Instrum. 81, 063109 (2010).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Creative Research Initiative Program, the National Space Laboratory Program and the Basic Science Research Program (2010-0024882) funded by the National Research Foundation of the Republic of Korea. M.F.K. acknowledges support by the German Science Foundation through the Emmy-Noether programme and SPP1391 and by the BMBF through the PhoNa network. The work of M.I.S. was supported by the Chemical Sciences, Biosciences and Geosciences Division (grant no. DEFG02-01ER15213) and the Materials Sciences and Engineering Division (grant no. DE-FG02-11ER46789) of the Office of Basic Energy Sciences, Office of Science, US Department of Energy.

Author information

Affiliations

Authors

Contributions

The project was planned by S.-W.K., S.K., I.-Y.P. and J.C. The simulation and experiment were performed by I.-Y.P., S.K., J.C. and D.-H.L. Spectral characterization of the higher harmonics was contributed by M.F.K. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Seung-Woo Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, IY., Kim, S., Choi, J. et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nature Photon 5, 677–681 (2011). https://doi.org/10.1038/nphoton.2011.258

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing