Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators

Abstract

Luminescent solar concentrators (LSCs) provide a simple means to concentrate sunlight without tracking the Sun. These devices absorb and then re-emit light at a lower frequency into the confined modes of a transparent slab, where it is guided towards photovoltaic cells attached to the slab edges. In the thermodynamic limit, a concentration ratio exceeding the equivalent of 100 suns is possible, but, in actual LSCs, optical propagation loss (due mostly to reabsorption) limits the concentration ratio to 10. Here, we introduce a general, all-optical means to overcome this problem by ‘resonance-shifting’, in which sharply directed emission from a bilayer cavity into the glass substrate returns to interact with the cavity off-resonance at each subsequent bounce, significantly reducing reabsorption loss en route to the edges. Using this strategy, we demonstrate near-lossless propagation for several different chromophores, which ultimately enables a more than twofold increase in concentration ratio over that of the corresponding conventional LSC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration of the resonance-shifting concept.
Figure 2: Absorption and emission of an evanescently coupled cavity.
Figure 3: Illustration of resonance-shifting with F8BT.
Figure 4: Analysis of resonance-shifting with a Lumogen dye.
Figure 5: Measurement of concentrator performance.
Figure 6: Simulation of concentrator performance.

References

  1. 1

    Welford, W. T. & Winston, R. High Collection Non-Imaging Optics (Academic Press, 1989).

  2. 2

    Smestad, G., Ries, H., Winston, R. & Yablonovitch, E. The thermodynamic limits of light concentrators. Sol. Energ. Mater. 21, 99–111 (1990).

    Article  Google Scholar 

  3. 3

    Weber, W. H. & Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 15, 2299–2300 (1976).

    ADS  Article  Google Scholar 

  4. 4

    Goetzberger, A. & Wittwer, V. Fluorescent planar collector-concentrators—a review. Sol. Cells 4, 3–23 (1981).

    ADS  Article  Google Scholar 

  5. 5

    Batchelder, J. S., Zewail, A. H. & Cole, T. Luminescent solar concentrators .1. Theory of operation and techniques for performance evaluation. Appl. Opt. 18, 3090–3110 (1979).

    ADS  Article  Google Scholar 

  6. 6

    Wittwer, V., Stahl, W. & Goetzberger, A. Fluorescent planar concentrators. Sol. Energ. Mater. 11, 187–197 (1984).

    Article  Google Scholar 

  7. 7

    Rowan, B. C., Wilson, L. R. & Richards, B. S. Advanced material concepts for luminescent solar concentrators. IEEE J. Sel. Top. Quant. 14, 1312–1322 (2008).

    Article  Google Scholar 

  8. 8

    van Sark, W. G. et al. Luminescent solar concentrators—a review of recent results. Opt. Express 16, 21773–21792 (2008).

    ADS  Article  Google Scholar 

  9. 9

    Yablonovitch, E. Thermodynamics of the fluorescent planar concentrator. J. Opt. Soc. Am. 70, 1362–1363 (1980).

    ADS  Article  Google Scholar 

  10. 10

    Batchelder, J. S., Zewail, A. H. & Cole, T. Luminescent solar concentrators. 2. Experimental and theoretical analysis of their possible efficiencies. Appl. Opt. 20, 3733–3754 (1981).

    ADS  Article  Google Scholar 

  11. 11

    Slooff, L. H. et al. A luminescent solar concentrator with 7.1% power conversion efficiency. Phys. Status Solidi R 2, 257–259 (2008).

    Article  Google Scholar 

  12. 12

    Farrell, D. J. & Yoshida, M. Operating regimes for second generation luminescent solar concentrators. Prog. Photovolt. Res. Appl. http://dx.doi.org/10.1002/pip.1096 (2011).

  13. 13

    Roncali, J. & Garnier, F. Photon-transport properties of luminescent solar concentrators—analysis and optimization. Appl. Opt. 23, 2809–2817 (1984).

    ADS  Article  Google Scholar 

  14. 14

    Olson, R. W., Loring, R. F. & Fayer, M. D. Luminescent solar concentrators and the reabsorption problem. Appl. Opt. 20, 2934–2940 (1981).

    ADS  Article  Google Scholar 

  15. 15

    Wilson, L. R. et al. Characterization and reduction of reabsorption losses in luminescent solar concentrators. Appl. Opt. 49, 1651–1661 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Swartz, B. A., Cole, T. & Zewail, A. H. Photon trapping and energy transfer in multiple-dye plastic matrices: an efficient solar-energy concentrator. Opt. Lett. 1, 73–75 (1977).

    ADS  Article  Google Scholar 

  17. 17

    Bailey, S. T. Optimized excitation energy transfer in a three-dye luminescent solar concentrator. Sol. Energy Mat. Sol. Cells 1, 67–75 (2007).

    Article  Google Scholar 

  18. 18

    Currie, M. J. et al. High-efficiency organic solar concentrators for photovoltaics. Science 321, 226–228 (2008).

    ADS  Article  Google Scholar 

  19. 19

    Sholin, V., Olson, J. D. & Carter, S. A. Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting. J. Appl. Phys. 101, 123114 (2007).

    ADS  Article  Google Scholar 

  20. 20

    Goldschmidt, J. C. et al. Increasing the efficiency of fluorescent concentrator systems. Sol. Energy Mat. Sol. Cells 93, 176–182 (2009).

    Article  Google Scholar 

  21. 21

    Peters, M. et al. The effect of photonic structures on the light guiding efficiency of fluorescent concentrators. J. Appl. Phys. 105, 014909 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Debije, M. G. et al. Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors. Appl. Opt. 49, 745–751 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Giebink, N. C., Wiederrecht, G. P. & Wasielewski, M. R. Strong exciton–photon coupling with colloidal quantum dots in a high-Q bilayer microcavity. Appl. Phys. Lett. 98, 081103 (2011).

    ADS  Article  Google Scholar 

  24. 24

    Benisty, H., De Neve, H. & Weisbuch, C. Impact of planar microcavity effects on light extraction—Part I: Basic concepts and analytical trends. IEEE J. Quantum Electron. 34, 1612–1631 (1998).

    ADS  Article  Google Scholar 

  25. 25

    Benisty, H., Stanley, R. & Mayer, M. Method of source terms for dipole emission modification in modes of arbitrary planar structures. J. Opt. Soc. Am. A 15, 1192–1201 (1998).

    ADS  Article  Google Scholar 

  26. 26

    Jun, Y. C., Briggs, R. M., Atwater, H. A. & Brongersma, M. L. Broadband enhancement of light emission in silicon slot waveguides. Opt. Express 17, 7479–7490 (2009).

    ADS  Article  Google Scholar 

  27. 27

    Winfield, J. M., Donley, C. L. & Kim, J. S. Anisotropic optical constants of electroluminescent conjugated polymer thin films determined by variable-angle spectroscopic ellipsometry. J. Appl. Phys. 102, 063505 (2007).

    ADS  Article  Google Scholar 

  28. 28

    Wilson, L. R. & Richards, B. S. Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators. Appl. Opt. 48, 212–220 (2009).

    ADS  Article  Google Scholar 

  29. 29

    Ahn, T. S. et al. Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements. Rev. Sci. Instrum. 78, 086105 (2007).

    ADS  Article  Google Scholar 

  30. 30

    Schubert, M. Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems. Phys. Rev. B 53, 4265–4274 (1996).

    ADS  Article  Google Scholar 

  31. 31

    Yeh, P. Optics of anisotropic layered media—a new 4 × 4 matrix algebra. Surf. Sci. 96, 41–53 (1980).

    ADS  Article  Google Scholar 

  32. 32

    Yeh, P. Optical Waves in Layered Media (Wiley, 2005).

  33. 33

    Bulovic, V. et al. Weak microcavity effects in organic light-emitting devices. Phys. Rev. B 58, 3730–3740 (1998).

    ADS  Article  Google Scholar 

  34. 34

    Shimizu, M. & Hiyama, T. Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem. Asian J. 5, 1516–1531 (2010).

    Article  Google Scholar 

  35. 35

    Shcherbatyuk, G. V. et al. Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators. Appl. Phys. Lett. 96, 191901 (2010).

    ADS  Article  Google Scholar 

  36. 36

    Barnham, K., Marques, J. L., Hassard, J. & O'Brien, P. Quantum-dot concentrator and thermodynamic model for the global redshift. Appl. Phys. Lett. 76, 1197–1199 (2000).

    ADS  Article  Google Scholar 

  37. 37

    Walheim, S., Schaffer, E., Mlynek, J. & Steiner, U. Nanophase-separated polymer films as high-performance antireflection coatings. Science 283, 520–522 (1999).

    ADS  Article  Google Scholar 

  38. 38

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

N.C.G. and G.P.W. acknowledge support from the Center for Nanoscale Materials for the experimental portion of this work, which was supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). N.C.G., G.P.W. and M.R.W. acknowledge support for data analysis and manuscript preparation as part of the ANSER Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0001059).

Author information

Affiliations

Authors

Contributions

N.C.G. conceived the idea, performed the experiments and analysed the data. G.P.W. and M.R.W. co-supervised the work. N.C.G., G.P.W. and M.R.W. prepared the manuscript.

Corresponding author

Correspondence to Noel C. Giebink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 905 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giebink, N., Wiederrecht, G. & Wasielewski, M. Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators. Nature Photon 5, 694–701 (2011). https://doi.org/10.1038/nphoton.2011.236

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing