Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

All-optical control of the quantum flow of a polariton condensate

Abstract

Although photons in vacuum are massless particles that do not appreciably interact with each other, significant interactions appear in suitable nonlinear media, leading to hydrodynamic behaviours typical of quantum fluids1,2,3,4,5,6. Here, we show the generation and manipulation of vortex–antivortex pairs in a coherent gas of strongly dressed photons (polaritons) flowing against an artificial potential barrier created and controlled by a light beam in a semiconductor microcavity. The optical control of the polariton flow allows us to reveal new quantum hydrodynamical phenomenologies such as the formation of vortex pairs upstream from the optical barrier, a case of ultrashort time excitation of the quantum flow, and the generation of vortices with counterflow trajectories. Additionally, we demonstrate how to permanently trap and store quantum vortices hydrodynamically generated in the wake of a defect. These observations are supported by time-dependent simulations based on the non-equilibrium Gross–Pitaevskii equation7.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic of the experiment.
Figure 2: Effect of the optical barrier on the nucleation of vortex–antivortex pairs.
Figure 3: Time-integrated real space emission patterns and corresponding vortex trajectories (obtained from successive time shots) for different parameters of the c.w. laser, injection density and barrier shape.
Figure 4: Vortex–antivortex pair storage in a triangular trap.

References

  1. Carusotto, I. & Ciuti, C. Swimming in a sea of superfluid light. Europhys. News 41, 23–27 (2010).

    ADS  Article  Google Scholar 

  2. Coullet, P., Gil, L. & Rocca, F. Optical vortices. Opt. Commun. 73, 403–408 (1989).

    ADS  Article  Google Scholar 

  3. Staliunas, K. & Sanchez-Morcillo, V. J. Transverse Patterns in Nonlinear Optical Resonators (Springer-Verlag, 2003).

  4. Wan, W., Jia, S. & Fleischer, J. W. Dispersive superfluid-like shock waves in nonlinear optics. Nature Phys. 3, 46–51 (2007).

    ADS  Article  Google Scholar 

  5. Bolda, E. L., Chiao, R. Y. & Zurek, W. H. Dissipative optical flow in a nonlinear Fabry–Perot cavity. Phys. Rev. Lett. 86, 416–419 (2001).

    ADS  Article  Google Scholar 

  6. Nardin, G. et al. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nature Phys. 7, 635–641 (2011).

    ADS  Article  Google Scholar 

  7. Pigeon, S., Carusotto, I. & Ciuti, C. Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid. Phys. Rev. B 83, 144513 (2011).

    ADS  Article  Google Scholar 

  8. Kavokin, A., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2007).

  9. Szymanska, M. H., Keeling, J. & Littlewood, P. B. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96, 230602 (2006).

    ADS  Article  Google Scholar 

  10. Wouters, M. & Carusotto, I. Superfluidity and critical velocities in nonequilibrium Bose–Einstein condensates, Phys. Rev. Lett. 105, 020602 (2010).

    ADS  Article  Google Scholar 

  11. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS  Article  Google Scholar 

  12. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    ADS  Article  Google Scholar 

  13. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    ADS  Article  Google Scholar 

  14. Carusotto, I. & Ciuti, C. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004).

    ADS  Article  Google Scholar 

  15. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    ADS  Article  Google Scholar 

  16. Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nature Phys. 6, 527–533 (2010).

    ADS  Article  Google Scholar 

  17. Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

    ADS  Article  Google Scholar 

  18. Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).

    ADS  Article  Google Scholar 

  19. Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007).

    ADS  Article  Google Scholar 

  20. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    ADS  Article  Google Scholar 

  21. Inouye, S. et al. Observation of vortex phase singularities in Bose–Einstein condensates. Phys. Rev. Lett. 87, 080402 (2001).

    ADS  Article  Google Scholar 

  22. Neely, T. W., Samson, E. C., Bradley, A. S., Davis, M. J. & Anderson, B. P. Observation of vortex dipoles in an oblate Bose–Einstein condensate. Phys. Rev. Lett. 104, 160401 (2010).

    ADS  Article  Google Scholar 

  23. Scheuer, J. & Orenstein, M. Optical vortices crystals: spontaneous generation in nonlinear semiconductor microcavities. Science 285, 230–233 (1999).

    Article  Google Scholar 

  24. Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008).

    ADS  Article  Google Scholar 

  25. Roumpos, G. et al. Single vortex–antivortex pair in an exciton–polariton condensate. Nature Phys. 7, 129–133 (2011).

    ADS  Article  Google Scholar 

  26. Frisch, T., Pomeau, Y. & Rica, S. Transition to dissipation in a model of superflow. Phys. Rev. Lett. 69, 1644–1647 (1992).

    ADS  Article  Google Scholar 

  27. Winiecki, T., Jackson, B., McCann, J. F. & Adams, C. S. Vortex shedding and drag in dilute Bose–Einstein condensates. J. Phys. B 33, 4069–4078 (2000).

    ADS  Article  Google Scholar 

  28. Henn, E. A. L. et al. Emergence of turbulence in an oscillating Bose–Einstein condensate. Phys. Rev. Lett. 103, 045301 (2009).

    ADS  Article  Google Scholar 

  29. Berloff, N. G. Turbulence in exciton–polariton condensates. Preprint at http://arxiv.org/abs/1010.5225 (2010).

  30. Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    ADS  Article  Google Scholar 

  31. Amo, A. et al. Light engineering of the polariton landscape in semiconductor microcavities. Phys. Rev. B 82, 081301 (2010).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Agence Nationale pour la Recherche (GEMINI 07NANO 07043), the IFRAF (Institut Francilien pour les atomes froids), project MIUR FIRB ItalNanoNet and the POLATOM ESF Research Networking Program. I.C. acknowledges financial support from the ERC through the QGBE grant. P.S.S.G. acknowledges support from CNPq, Brazil. A.B. and C.C. are members of the Institut Universitaire de France (IUF). The authors are grateful to G. Martiradonna for helping with the realization of the laser mask and to P. Cazzato for technical support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the implementation and modelling of the experiment, interpretation of the results and writing of the manuscript.

Corresponding author

Correspondence to D. Sanvitto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 626 kb)

Supplementary information

Supplementary movie (AVI 6520 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sanvitto, D., Pigeon, S., Amo, A. et al. All-optical control of the quantum flow of a polariton condensate. Nature Photon 5, 610–614 (2011). https://doi.org/10.1038/nphoton.2011.211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.211

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing