Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons

Abstract

Photonic crystal membranes provide a versatile planar platform for on-chip implementations of photonic quantum circuits1,2,3. One prominent quantum element is a coupled system consisting of a nanocavity and a single quantum dot4,5,6,7, which forms a fundamental building block for elaborate quantum information networks8,9,10 and a cavity quantum electrodynamic system controlled by single photons3. To date, no fast tuning mechanism is available to achieve control within the system coherence time. Here, we demonstrate dynamic tuning by monochromatic coherent acoustic phonons formed by a surface acoustic wave with frequencies exceeding 1.7 GHz, one order of magnitude faster than alternative approaches5,6,7. We resolve a periodic modulation of the optical mode exceeding eight times its linewidth, preserving both the spatial mode profile and a high quality factor. Because photonic crystal membranes confine photonic and phononic excitations11,12, coupling optical to acoustic frequencies, our technique opens up the way to coherent acoustic control of optomechanical crystals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Tuning mechanism setup and experimental results.
Figure 2: Time-integrated emission spectra for three different nanocavities and SAW frequencies.
Figure 3: Numerical simulations.
Figure 4: Comparison of SAW phase-resolved experimental data with 3D-FDTD simulation results.

References

  1. 1

    Notomi, M., Shinya, A., Mitsugi, S., Kuramochi, E. & Ryu, H-Y. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 12, 1551–1561 (2004).

  2. 2

    O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

  3. 3

    Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys. 4, 859–863 (2008).

  4. 4

    Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007).

  5. 5

    Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

  6. 6

    Faraon, A., Majumdar, A., Kim H., Petroff, P. & Vučković, J. Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity. Phys. Rev. Lett. 104, 047402 (2010).

  7. 7

    Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y. & Arakawa, Y. Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system. Nature Phys. 6, 279–283 (2010).

  8. 8

    Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

  9. 9

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

  10. 10

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

  11. 11

    Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

  12. 12

    Mohammadi, S., Eftekhar, A. A., Khelif, A. & Adibi, A. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Opt. Express 18, 9164–9172 (2010).

  13. 13

    Wixforth, A., Kotthaus, J. P. & Weimann, G. Quantum oscillations in the surface-acoustic-wave attenuation caused by a two-dimensional electron gas. Phys. Rev. Lett. 56, 2104–2106 (1986).

  14. 14

    Kukushkin, I. V., Smet, J. H., Scarola, V. W., Umansky, V. & von Klitzing, K. Dispersion of the excitations of the fractional quantum Hall states. Science 324, 1044–1047 (2009).

  15. 15

    Stotz, J. A. H., Hey, R., Santos, P. V. & Ploog, K. H. Coherent spin transport through dynamic quantum dots. Nature Mater. 4, 585–588 (2005).

  16. 16

    Metcalfe, M., Carr, S. M., Muller, A., Solomon, G. S. & Lawall, J. Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. Phys. Rev. Lett. 105, 037401 (2010).

  17. 17

    Völk, S. et al. Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves. Nano Lett. 10, 3399–3407 (2010).

  18. 18

    Krishnamurthy, S. & Santos, P. V. Optical modulation in photonic band gap structures by surface acoustic waves. J. Appl. Phys. 96, 1803–1810 (2004).

  19. 19

    de Lima, M. M., van der Poel, M., Santos, P. V. & Hvam, J. M. Phonon-induced polariton superlattices. Phys. Rev. Lett. 97, 045501 (2006).

  20. 20

    de Lima, M. M. & Santos, P. V. Modulation of photonic structures by surface acoustic waves. Rep. Prog. Phys. 68, 1639–1701 (2005).

  21. 21

    Ruppert, C. et al. Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films. Phys. Rev. B 82, 081416 (R) (2010).

  22. 22

    Akahane, Y., Asano, T., Song, B-S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

  23. 23

    Berstermann, T. et al. Optical bandpass switching by modulating a microcavity using ultrafast acoustics. Phys. Rev. B 81, 085316 (2010).

  24. 24

    Santos, P. V. Collinear light modulation by surface acoustic waves in laterally structured semiconductors. J. Appl. Phys. 89, 5060–5066 (2001).

  25. 25

    Völk, S. et al. Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy. Appl. Phys. Lett. 98, 023109 (2011).

  26. 26

    Kress, A. et al. Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals. Phys. Rev. B 71, 241304 (R) (2005).

  27. 27

    Tanabe, T., Notomi, M., Kuramochi, E., Shinya, A. & Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photon. 1, 49–52 (2007).

  28. 28

    Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

  29. 29

    Mohammadi, S., Eftekhar, A. A., Hunt, W. D. & Adibi, A. High-Q micromechanical resonators in a two-dimensional phononic crystal slab. Appl. Phys. Lett. 94, 051906 (2009).

  30. 30

    Eichenfield, M., Chan, J., Safavi-Naeini, A. H., Vahala, K. J. & Painter, O. Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals. Opt. Express 17, 20078–20098 (2009).

  31. 31

    Gavartin, E. et al. Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys. Rev. Lett. 106, 203902 (2011).

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the cluster of excellence ‘Nanosystems Initiative Munich’ (NIM) and via the Emmy-Noether-Programme (KR 3790/2-1), by the Bavaria-California Technology Center (BaCaTeC), by the National Science Foundation (NSF) via NIRT grant no. 0304678 and Marie Curie EXT-CT-2006-042580. A portion of this work was carried out in the UCSB nanofabrication facility, part of the NSF-funded NNIN network. S.M.T. acknowledges financial support from the US Department of Education GAANN grant. D.A.F. acknowledges support from the Bayerische Forschungsstiftung.

Author information

Affiliations

Authors

Contributions

D.A.F. performed the experiments and 3D-FDTD simulations. D.A.F. and S.M.T. designed, fabricated and characterized the devices. H.K. and P.M.P. fabricated the molecular beam epitaxy material. D.A.F. and H.J.K. performed data analysis and modelling, conceived the 3D-FDTD simulations and wrote the manuscript with contributions from all other authors. H.J.K., D.B., P.M.P. and A.W. inspired and supervised the project.

Corresponding author

Correspondence to Hubert J. Krenner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 871 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuhrmann, D., Thon, S., Kim, H. et al. Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. Nature Photon 5, 605–609 (2011). https://doi.org/10.1038/nphoton.2011.208

Download citation

Further reading