High-energy attosecond light sources

Article metrics

Abstract

The development of attosecond technology is one of the most significant achievements in the field of ultrafast optics over the past decade. Since the first experimental demonstration of attosecond pulses just ten years ago, novel techniques have been introduced for the generation, characterization and application of subfemtosecond pulses. The development of attosecond tools is continuously triggering the introduction of new spectroscopic and measurement methods, which will offer the opportunity to investigate unexplored research areas with unprecedented time resolution. The wealth of ultrafast processes, which can be investigated by taking advantage of attosecond temporal resolution, can be greatly extended by the development of high-intensity attosecond sources. This Review covers a selection of recent advances in the field of attosecond technology, with particular attention being given to the generation and application of high-energy attosecond pulses.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Isolated attosecond pulses from gases.
Figure 2: Temporal gating.
Figure 3: Ionization gating: electron quantum path analysis.
Figure 4: Isolated attosecond pulses by harmonic generation from a solid surface.
Figure 5: Attosecond nonlinear Fourier transform spectroscopy.
Figure 6: Attosecond pump–probe experiment for investigating electron motion inside an atom.

References

  1. 1

    Zewail, A. H. Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond. J. Phys. Chem. A 104, 5660–5694 (2000).

  2. 2

    Agostini, P. & DiMauro, L. F. The physics of attosecond light pulses. Rep. Prog. Phys. 67, 813–855 (2004).

  3. 3

    Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).

  4. 4

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

  5. 5

    Nisoli, M. & Sansone, G. New frontiers in attosecond science. Prog. Quant. Electron. 33, 17–59 (2009).

  6. 6

    Li, X. F., L'Huillier, A., Ferray, M., Lompré, L. A. & Mainfray, G. Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751–5761 (1989).

  7. 7

    McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

  8. 8

    Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998).

  9. 9

    Bartels, R. et al. Shaped-pulse optimization of coherent soft-X-rays. Nature 406, 164–166 (2000).

  10. 10

    Schnürer, R. et al. Absorption-limited generation of coherent ultrashort soft-X-Ray pulses. Phys. Rev. Lett. 83, 722–725 (1999).

  11. 11

    Hergott, J.F. et al. Extreme-ultraviolet high-order harmonic pulses in the microjoule range. Phys. Rev. A 66, 021801(R) (2002).

  12. 12

    Takahashi, E., Nabekawa, Y., Otsuka, T., Obara, M. & Midorikawa, K. Generation of highly coherent submicrojoule soft X-rays by high-order harmonics. Phys. Rev. A 66, 021802 (2002).

  13. 13

    Kazamias, S. et al. Global optimization of high harmonic generation. Phys. Rev. Lett. 90, 193901 (2003).

  14. 14

    Constant, E. et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).

  15. 15

    Ditmire, T., Crane, J. K., Nguyen, H., DaSilva, L. B. & Perry, M. D. Energy-yield and conversion efficiency measurements of high-order harmonic radiation. Phys. Rev. A 51, R902–R905 (1995).

  16. 16

    Midorikawa, K., Nabekawa, Y. & Suda, A. XUV multiphoton processes with intense high-order harmonics. Prog. Quant. Electron. 32, 43–88 (2008).

  17. 17

    Takahashi, E. J., Hasegawa, H. & Midorikawa, K. Generation of 10-mJ coherent extreme-ultraviolet light by use of high-order harmonics. Opt. Lett. 27, 1920–1922 (2002).

  18. 18

    Nabekawa, Y. et al. Interferometric autocorrelation of an attosecond pulse train in the single-cycle regime. Phys. Rev. Lett. 97, 153904 (2006).

  19. 19

    Shimizu, T. et al. Observation and analysis of an interferometric autocorrelation trace of an attosecond pulse train. Phys. Rev. A 75, 033817 (2007).

  20. 20

    Popmintchev, T., Chen, M.C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nature Photon. 4, 822–832 (2010).

  21. 21

    Seres, J. et al. Coherent superposition of laser-driven soft-X-ray harmonics from successive sources. Nature Phys. 3, 878–883 (2007).

  22. 22

    Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

  23. 23

    Corkum, P. B., Burnett, N. H. & Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

  24. 24

    Tcherbakoff, O., Mével, E., Descamps, D., Plumridge, J. & Constant, E. Time-gated high-order harmonic generation. Phys. Rev. A 68, 043804 (2003).

  25. 25

    Strelkov, V. et al. Single attosecond pulse production with an ellipticity-modulated driving IR pulse. J. Phys. B 38, L161–L167 (2005).

  26. 26

    Sola, I. J. et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nature Phys. 2, 319–322 (2006).

  27. 27

    Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

  28. 28

    Mauritsson, J. et al. Attosecond pulse trains generated using two color laser fields. Phys. Rev. Lett. 97, 013001 (2006).

  29. 29

    Chang, Z. Controlling attosecond pulse generation with a double optical gating. Phys. Rev. A 76, 051403(R) (2007).

  30. 30

    Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

  31. 31

    Mashiko, H., Gilbertson, S., Li, C., Moon, E. & Zenghu, C. Optimizing the photon flux of double optical gated high-order harmonic spectra. Phys. Rev. A 77, 063423 (2008).

  32. 32

    Feng, X. et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Phys. Rev. Lett. 103, 183901 (2009).

  33. 33

    Gilbertson, S. et al. Isolated attosecond pulse generation using multicycle pulses directly from a laser amplifier. Phys. Rev. A 81, 043810 (2010).

  34. 34

    Tzallas, P. et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields. Nature Phys. 3, 846–850 (2007).

  35. 35

    Charalambidis, D. et al. Exploring intense attosecond pulses. New J. Phys. 10, 025018 (2008).

  36. 36

    Skantzakis, E., Tzallas, P., Kruse, J., Kalpouzos, C. & Charalambidis, D. Coherent continuum extreme ultraviolet radiation in the sub100nJ range generated by a high-power many-cycle laser field. Opt. Lett. 34, 1732–1734 (2009).

  37. 37

    Tate, J. et al. Scaling of wave-packet dynamics in an intense midinfrared field. Phys. Rev. Lett. 98, 013901 (2007).

  38. 38

    Colosimo, P. et al. Scaling strong-field interactions towards the classical limit. Nature Phys. 4, 386–389 (2008).

  39. 39

    Shiner, A. D. et al. Wavelength scaling of high harmonic generation efficiency. Phys. Rev. Lett. 103, 073902 (2009).

  40. 40

    Takahashi, E., Kanai, T., Nabekawa, Y. & Midorikawa, K. 10 mJ class femtosecond optical parametric amplifier for generating soft X-ray harmonics. Appl. Phys. Lett. 93, 041111 (2008).

  41. 41

    Popmintchev, T. et al. Extended phase matching of high harmonics driven by mid-infrared light. Opt. Lett. 33, 2128–2130 (2008).

  42. 42

    Merdji, H. et al. Isolated attosecond pulses using a detuned second-harmonic field. Opt. Lett. 32, 3134–3136 (2007).

  43. 43

    Calegari, F. et al. Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver. Opt. Lett. 34, 3125–3127 (2009).

  44. 44

    Takahashi, E. J., Lan, P., Mücke, O. D., Nabekawa, Y. & Midorikawa, K. Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse. Phys. Rev. Lett. 104, 233901 (2010).

  45. 45

    Lan, P., Takahashi, E. J. & Midorikawa, K. Optimization of infrared two-color multicycle field synthesis for intenseisolatedattosecond-pulse generation. Phys. Rev. A 82, 053413 (2010).

  46. 46

    Cao, W., Lu, P., Lan, P., Wang, X. & Yang, G. Single-attosecond pulse generation with an intense multicycle driving pulses. Phys. Rev. A 74, 063821 (2006).

  47. 47

    Kim, K. T., Kim, C. M., Baik, M. G., Umesh, G. & Nam, C. H. Single sub50attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion. Phys. Rev. A 69, 051805(R) (2004).

  48. 48

    Abel, M. J. et al. Isolated attosecond pulses from ionization gating of high-harmonic emission. Chem. Phys. 366, 9–14 (2009).

  49. 49

    Thomann, I. et al. Characterizing isolated attosecond pulses from hollow-core waveguides using multi-cycle driving pulses. Opt. Express 17, 4611–4633 (2009).

  50. 50

    Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photon. 4, 875–879 (2010).

  51. 51

    Lewenstein, M., Balcou, Ph., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser pulses. Phys. Rev. A 49, 2117–2132 (1994).

  52. 52

    Sansone, G., Vozzi, C., Stagira, S. & Nisoli, M. Nonadiabatic quantum path analysis of high-order harmonic generation: role of the carrier-envelope phase on short and long paths. Phys. Rev. A. 70, 013411 (2004).

  53. 53

    Priori, E. et al. Nonadiabatic three-dimensional model of high-order harmonic generation in the fewopticalcycle regime. Phys. Rev. A 61, 63801 (2000).

  54. 54

    Chakraborty, H. S., Gaarde, M. B. & Couairon, A. Single attosecond pulses from high harmonics driven by self-compressed filaments. Opt. Lett. 31, 3662–3664 (2006).

  55. 55

    Gaarde, M. B. & Couairon, A. Intensity spikes in laser filamentation: diagnostics and application. Phys. Rev. Lett. 103, 043901 (2009).

  56. 56

    Steingrube, D. S. et al. Generation of high-order harmonics with ultra-short pulses from filamentation. Opt. Express 17, 16177–16182 (2009).

  57. 57

    Steingrube, D. S. et al. High-order harmonic generation directly from a filament. New J. Phys. 13, 043022 (2011).

  58. 58

    Thaury, C. & Quéré, F. High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms. J. Phys. B 43, 213001 (2010).

  59. 59

    Quéré, F. et al. Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006).

  60. 60

    Lichters, R., MeyerterVehn, J. & Pukhov, A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425–3437 (1996).

  61. 61

    Nomura, Y. et al. Attosecond phase locking of harmonics emitted from laser-produced plasmas. Nature Phys. 5, 124–128 (2009).

  62. 62

    Tsakiris, G. D., Eidmann, K., MeyerterVehn, J. & Krausz, F. Route to intense single attosecond pulses. New J. Phys. 8, 19 (2006).

  63. 63

    Baeva, T., Gordienko, S. & Pukhov, A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006).

  64. 64

    Baeva, T., Gordienko, S. & Pukhov, A. Relativistic plasma control for single attosecond X-ray burst generation. Phys. Rev. E 74, 065401(R) (2006).

  65. 65

    Dromey, B. et al. High harmonic generation in the relativistic limit. Nature Phys. 2, 456–459 (2006).

  66. 66

    Dromey, B. et al. Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 085001 (2007).

  67. 67

    Rykovanov, S. G., Geissler, M., MeyerterVehn, J. & Tsakiris, G. D. Intense single attosecond pulses from surface harmonics using the polarization gating technique. New J. Phys. 10, 025025 (2008).

  68. 68

    Naumova, N. M., Nees, J. A., Sokolov, I. V., Hou, B. & Mourou, G. A. Relativistic generation of isolated attosecond pulses in a λ3 focal volume. Phys. Rev. Lett. 92, 063902 (2004).

  69. 69

    Dubietis, A., Jonušauskas, F. & Piskarskas, A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 88, 437–440 (1992).

  70. 70

    Herrmann, D. et al. Generation of subthreecycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. Opt. Lett. 34, 2459–2461 (2009).

  71. 71

    Sekikawa, T., Kosuge, A., Kanai, T. & Watanabe, S. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004).

  72. 72

    Kosuge, A. et al. Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet. Phys. Rev. Lett. 97, 263901, (2006).

  73. 73

    Kobayashi, Y., Sekikawa, T., Nabekawa, Y. & Watanabe, S. 27-fs extreme ultraviolet pulse generation by high-order harmonics. Opt. Lett. 23, 64–66 (1998).

  74. 74

    Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).

  75. 75

    Okino, T. et al. Attosecond nonlinear Fourier transformation spectroscopy of CO2 in extreme ultraviolet wavelength region. J. Chem. Phys. 129, 161103 (2008).

  76. 76

    Furukawa, Y. et al. Nonlinear Fourier-transform spectroscopy of D2 using high-order harmonic radiation. Phys. Rev. A 82, 013421 (2010).

  77. 77

    Skantzakis, E. et al. Tracking autoionizingwavepacket dynamics at the 1-fs temporal scale. Phys. Rev. Lett. 105, 043902 (2010).

  78. 78

    Cavalieri, S., Eramo, R., Materazzi, M., Corsi, C. & Bellini, M. Ramsey-type spectroscopy with high-order harmonics. Phys. Rev. Lett. 89, 133002 (2002).

  79. 79

    Hu, S. X. & Collins, L. A. Attosecond pump probe: exploring ultrafast electron motion inside an atom. Phys. Rev. Lett. 96, 073004 (2006).

  80. 80

    Wehlitz, R. et al. Electron-energy and angular distributions in the double photoionization of helium. Phys. Rev. Lett. 67, 3764–3767 (1991).

  81. 81

    Chu, W.C. & Lin, C. D. Theory of ultrafast autoionization dynamics of Fano resonances. Phys. Rev. A 82, 053415 (2010).

  82. 82

    Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

  83. 83

    Wickenhauser, M., Burgdörfer, J., Krausz, F. & Drescher, M. Time resolved Fano resonances. Phys. Rev. Lett. 94, 023002 (2005).

  84. 84

    Argenti, L. & Lindroth, E. Ionization branching ratio control with a resonance attosecond clock. Phys. Rev. Lett. 105, 053002 (2010).

  85. 85

    Mashiko, H. et al. Extreme ultraviolet supercontinuua supporting pulse durations of less than one atomic unit of time. Opt. Lett. 34, 3337–3339 (2009).

Download references

Acknowledgements

The research leading to the results presented in this Review received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n.227355-ELYCHE. The authors acknowledge financial support from the Italian Ministry of Research (FIRB-IDEAS RBID08CRXK), support from the European Union under contract n.228334 JRA-ALADIN (Laserlab Europe II) and from MC-RTN ATTOFEL (FP7-238362). G.S. acknowledges financial support from the Alexander von Humboldt Foundation (project Tirinto).

Author information

Correspondence to Mauro Nisoli.

Rights and permissions

Reprints and Permissions

About this article

Further reading