Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Nonlinear optics

Fibre sources in the deep ultraviolet

Wavelength-tunable ultraviolet light sources are required for a wide range of applications, but are typically difficult to manufacture and operate. A simple gas-filled optical fibre that performs efficient frequency conversion from the infrared to the deep-ultraviolet could be a promising answer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of free-space and PCF frequency conversion schemes.

References

  1. Misra, P. & Dubinskii, M. A. Ultaviolet Spectroscopy and UV lasers Ch. 1,7,10 (Marcel Dekker, 2002).

    Book  Google Scholar 

  2. Ferrari, A. C. & Robertson, J. Phys. Rev. B 64, 075414 (2001).

    Article  ADS  Google Scholar 

  3. Joly, N. Y. et al. Phys. Rev. Lett 106, 203901 (2011).

    Article  ADS  Google Scholar 

  4. Durfee III, C. G., Backus, S., Murnane, M. M. & Kapteyn, H. C. Opt. Lett. 22, 1565–1567 (1997).

    Article  ADS  Google Scholar 

  5. Granados, E., Spence, D. J. & Mildren, R. P. Opt. Express 19, 10857–10863 (2011).

    Article  ADS  Google Scholar 

  6. Ghotbi, M., Beutler, M. & Noack, F. Opt. Lett. 35, 3492–3494 (2010).

    Article  ADS  Google Scholar 

  7. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics Ch. 3,9,21,22 (John Wiley, 2007).

    Google Scholar 

  8. Agrawal, G. P. Nonlinear Fibre Optics Ch. 1–4,11 (Academic, 2007).

    Google Scholar 

  9. Russell, P. St. J. J. Lightwave Technol. 24, 4729–4749 (2006).

    Article  ADS  Google Scholar 

  10. Dudley, J. M., Genty, G. & Coen, S. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  11. Dudley, J. M. & Taylor, J. R. Nature Photon. 3, 85–90 (2009).

    Article  ADS  Google Scholar 

  12. Benabid, F., Knight, J. C., Antonopoulos, G. & Russell, P. S. J. Science 298, 399–402 (2002).

    Article  ADS  Google Scholar 

  13. Nold, J. et al. Opt. Lett. 35, 2922–2924 (2010).

    Article  ADS  Google Scholar 

  14. Im, S. J., Husakou, A. & Herrmann, J. Opt. Express 18, 5367–5374 (2010).

    Article  ADS  Google Scholar 

  15. Im, S. J., Husakou, A. & Herrmann, J. Opt. Express 17, 13050–13058 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea C. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Ferrari, A. Fibre sources in the deep ultraviolet. Nature Photon 5, 446–447 (2011). https://doi.org/10.1038/nphoton.2011.166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing