Letter | Published:

High-energy pulse synthesis with sub-cycle waveform control for strong-field physics

Nature Photonics volume 5, pages 475479 (2011) | Download Citation

Abstract

Over the last decade, control of atomic-scale electronic motion by non-perturbative optical fields has broken tremendous new ground with the advent of phase-controlled high-energy few-cycle pulse sources1. The development of close to single-cycle, carrier-envelope phase controlled, high-energy optical pulses has already led to isolated attosecond EUV pulse generation2, expanding ultrafast spectroscopy to attosecond resolution1. However, further investigation and control of these physical processes requires sub-cycle waveform shaping, which has not been achievable to date. Here, we present a light source, using coherent wavelength multiplexing, that enables sub-cycle waveform shaping with a two-octave-spanning spectrum and a pulse energy of 15 µJ. It offers full phase control and allows generation of any optical waveform supported by the amplified spectrum. Both energy and bandwidth scale linearly with the number of sub-modules, so the peak power scales quadratically. The demonstrated system is the prototype of a class of novel optical tools for attosecond control of strong-field physics experiments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

  2. 2.

    et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

  3. 3.

    , & Optical frequency metrology. Nature 416, 233–237 (2002).

  4. 4.

    et al. Atomic transient recorder. Nature 427, 817–821 (2004).

  5. 5.

    et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1. Nature 452, 610–612 (2008).

  6. 6.

    Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

  7. 7.

    Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

  8. 8.

    , , & Ideal waveform to generate the maximum possible electron recollision energy for any given oscillation period. Phys. Rev. Lett. 102, 063003 (2009).

  9. 9.

    A proposed sub-femtosecond pulse synthesizer using separate phase-locked laser oscillators. Opt. Commun. 80, 71–75 (1990).

  10. 10.

    , , & Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers. Opt. Lett. 26, 1806–1808 (2001).

  11. 11.

    et al. Phase-coherent optical pulse synthesis from separate femtosecond lasers. Science 293, 1286–1289 (2001).

  12. 12.

    et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nature Photon. 4, 33–36 (2010).

  13. 13.

    , , & Few-optical-cycle light pulses with passive carrier-envelope phase stabilization. Laser Photon. Rev. 5, 323–351 (2011).

  14. 14.

    , & Trends in chirped pulse optical parametric amplification. IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).

  15. 15.

    et al. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression. Opt. Lett. 34, 1639–1641 (2009).

  16. 16.

    , , , & Temporal optimization of ultrabroadband high-energy OPCPA. Opt. Express 17, 5540–5555 (2009).

  17. 17.

    , & Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 88, 1339011 (2002).

  18. 18.

    et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation. Opt. Lett. 28, 947–949 (2003).

  19. 19.

    , & Theory and design of two-dimensional spectral shearing interferometry for few-cycle pulse measurement. J. Opt. Soc. Am. B 27, 1165–1173 (2010).

  20. 20.

    , , , & Closed-loop carrier-envelope phase stabilization with an acousto-optic programmable dispersive filter. Opt. Lett. 34, 3647–3649 (2009).

  21. 21.

    et al. Single-shot carrier-envelope phase measurement of few-cycle laser pulses. Nature Phys. 5, 357–362 (2009).

  22. 22.

    et al. Scalable Yb-MOPA-driven carrier-envelope phase-stable few-cycle parametric amplifier at 1.5 µm. Opt. Lett. 34, 118–120 (2009).

  23. 23.

    et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl Acad. Sci. USA 106, 10516–10521 (2009).

  24. 24.

    et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

  25. 25.

    & Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1–18 (2003).

  26. 26.

    , & Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 97, 247402 (2006).

  27. 27.

    et al. Direct test of laser tunneling with electron momentum imaging. Phys. Rev. Lett. 105, 133002 (2010).

  28. 28.

    Two-dimensional spectroscopy at infrared and optical frequencies. Proc. Natl Acad. Sci. USA 104, 14190–14196 (2007).

  29. 29.

    & Propagation properties of ultrashort pulsed beams with constant waist width in free space. Opt. Laser Technol. 39, 619–625 (2007).

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (grants FA9550-09-1-0212, FA8655-09-1-3101 and FA9550-10-1-0063) and by Progetto Roberto Rocca.

Author information

Affiliations

  1. Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    • Shu-Wei Huang
    • , Giovanni Cirmi
    • , Jeffrey Moses
    • , Kyung-Han Hong
    • , Siddharth Bhardwaj
    • , Jonathan R. Birge
    • , Li-Jin Chen
    •  & Franz X. Kärtner
  2. Centre for Ultrahigh Bandwidth Devices for Optical Systems, Australian Research Council Centre of Excellence, School of Physics, University of Sydney, NSW 2006, Australia

    • Enbang Li
    •  & Benjamin J. Eggleton
  3. IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy

    • Giulio Cerullo
  4. DESY-Center for Free-Electron Laser Science and Hamburg University, Notkestraße 85, D-22607 Hamburg, Germany

    • Franz X. Kärtner

Authors

  1. Search for Shu-Wei Huang in:

  2. Search for Giovanni Cirmi in:

  3. Search for Jeffrey Moses in:

  4. Search for Kyung-Han Hong in:

  5. Search for Siddharth Bhardwaj in:

  6. Search for Jonathan R. Birge in:

  7. Search for Li-Jin Chen in:

  8. Search for Enbang Li in:

  9. Search for Benjamin J. Eggleton in:

  10. Search for Giulio Cerullo in:

  11. Search for Franz X. Kärtner in:

Contributions

F.X.K., K.H.H., J.M. and S.W.H. conceived the experiment, and carried it out together with G.Ce. and G.Ci.; S.B. provided the TDSE simulation and the spectrogram analysis; J.R.B. provided critical discussion on 2DSI; L.J.C. provided critical help and discussion on the Ti:sapphire oscillator; E.L. and B.J.E. provided the chirped fibre Bragg grating; S.W.H., G.Ci., K.H.H., J.M., F.X.K. and G.Ce. co-wrote the paper. F.X.K. is the senior author of the group and supervised the work.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Franz X. Kärtner.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2011.140

Further reading