High-energy pulse synthesis with sub-cycle waveform control for strong-field physics


Over the last decade, control of atomic-scale electronic motion by non-perturbative optical fields has broken tremendous new ground with the advent of phase-controlled high-energy few-cycle pulse sources1. The development of close to single-cycle, carrier-envelope phase controlled, high-energy optical pulses has already led to isolated attosecond EUV pulse generation2, expanding ultrafast spectroscopy to attosecond resolution1. However, further investigation and control of these physical processes requires sub-cycle waveform shaping, which has not been achievable to date. Here, we present a light source, using coherent wavelength multiplexing, that enables sub-cycle waveform shaping with a two-octave-spanning spectrum and a pulse energy of 15 µJ. It offers full phase control and allows generation of any optical waveform supported by the amplified spectrum. Both energy and bandwidth scale linearly with the number of sub-modules, so the peak power scales quadratically. The demonstrated system is the prototype of a class of novel optical tools for attosecond control of strong-field physics experiments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of the high-energy optical waveform synthesizer.
Figure 2: Characterization of the synthesized pulses.
Figure 3: The synthesized electric-field waveforms.
Figure 4: Extreme nonlinear optics with sub-cycle manipulated waveforms.


  1. 1

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Article  Google Scholar 

  2. 2

    Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Article  Google Scholar 

  4. 4

    Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    ADS  Article  Google Scholar 

  5. 5

    Li, C. H. et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1. Nature 452, 610–612 (2008).

    ADS  Article  Google Scholar 

  6. 6

    Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Article  Google Scholar 

  7. 7

    Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    Google Scholar 

  8. 8

    Chipperfield, L. E., Robinson, J. S., Tisch, J. W. G. & Marangos, J. P. Ideal waveform to generate the maximum possible electron recollision energy for any given oscillation period. Phys. Rev. Lett. 102, 063003 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Hänsch, T. W. A proposed sub-femtosecond pulse synthesizer using separate phase-locked laser oscillators. Opt. Commun. 80, 71–75 (1990).

    ADS  Article  Google Scholar 

  10. 10

    Wei, Z. Y., Kobayashi, Y., Zhang, Z. G. & Torizuka, K. Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers. Opt. Lett. 26, 1806–1808 (2001).

    ADS  Article  Google Scholar 

  11. 11

    Shelton, R. K. et al. Phase-coherent optical pulse synthesis from separate femtosecond lasers. Science 293, 1286–1289 (2001).

    ADS  Article  Google Scholar 

  12. 12

    Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nature Photon. 4, 33–36 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Cerullo, G., Baltuška, A., Mücke, O. D. & Vozzi, C. Few-optical-cycle light pulses with passive carrier-envelope phase stabilization. Laser Photon. Rev. 5, 323–351 (2011).

    ADS  Article  Google Scholar 

  14. 14

    Dubietis, A., Butkus, R. & Piskarskas, A. P. Trends in chirped pulse optical parametric amplification. IEEE J. Sel. Top. Quantum Electron. 12, 163–172 (2006).

    ADS  Article  Google Scholar 

  15. 15

    Moses, J. et al. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression. Opt. Lett. 34, 1639–1641 (2009).

    ADS  Article  Google Scholar 

  16. 16

    Moses, J., Manzoni, C., Huang, S. W., Cerullo, G. & Kärtner, F. X. Temporal optimization of ultrabroadband high-energy OPCPA. Opt. Express 17, 5540–5555 (2009).

    ADS  Article  Google Scholar 

  17. 17

    Baltuška, A., Fuji, T. & Kobayashi, T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Phys. Rev. Lett. 88, 1339011 (2002).

    Article  Google Scholar 

  18. 18

    Schibli, T. R. et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation. Opt. Lett. 28, 947–949 (2003).

    ADS  Article  Google Scholar 

  19. 19

    Birge, J. R., Crespo, H. M. & Kärtner, F. X. Theory and design of two-dimensional spectral shearing interferometry for few-cycle pulse measurement. J. Opt. Soc. Am. B 27, 1165–1173 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Forget, N., Canova, L., Chen, X., Jullien, A. & Lopez-Martens, R. Closed-loop carrier-envelope phase stabilization with an acousto-optic programmable dispersive filter. Opt. Lett. 34, 3647–3649 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Wittmann, T. et al. Single-shot carrier-envelope phase measurement of few-cycle laser pulses. Nature Phys. 5, 357–362 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Mücke, O. D. et al. Scalable Yb-MOPA-driven carrier-envelope phase-stable few-cycle parametric amplifier at 1.5 µm. Opt. Lett. 34, 118–120 (2009).

    ADS  Article  Google Scholar 

  23. 23

    Popmintchev, T. et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl Acad. Sci. USA 106, 10516–10521 (2009).

    ADS  Article  Google Scholar 

  24. 24

    Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    ADS  Article  Google Scholar 

  25. 25

    Cerullo, G. & De Silvestri, S. Ultrafast optical parametric amplifiers. Rev. Sci. Instrum. 74, 1–18 (2003).

    ADS  Article  Google Scholar 

  26. 26

    Hommelhoff, P., Kealhofer, C. & Kasevich, M. A. Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 97, 247402 (2006).

    ADS  Article  Google Scholar 

  27. 27

    Arissian, L. et al. Direct test of laser tunneling with electron momentum imaging. Phys. Rev. Lett. 105, 133002 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Hochstrasser, R. M. Two-dimensional spectroscopy at infrared and optical frequencies. Proc. Natl Acad. Sci. USA 104, 14190–14196 (2007).

    ADS  Article  Google Scholar 

  29. 29

    Zou, Q. H. & Lu, B. Propagation properties of ultrashort pulsed beams with constant waist width in free space. Opt. Laser Technol. 39, 619–625 (2007).

    ADS  Article  Google Scholar 

Download references


This work was supported by the Air Force Office of Scientific Research (grants FA9550-09-1-0212, FA8655-09-1-3101 and FA9550-10-1-0063) and by Progetto Roberto Rocca.

Author information




F.X.K., K.H.H., J.M. and S.W.H. conceived the experiment, and carried it out together with G.Ce. and G.Ci.; S.B. provided the TDSE simulation and the spectrogram analysis; J.R.B. provided critical discussion on 2DSI; L.J.C. provided critical help and discussion on the Ti:sapphire oscillator; E.L. and B.J.E. provided the chirped fibre Bragg grating; S.W.H., G.Ci., K.H.H., J.M., F.X.K. and G.Ce. co-wrote the paper. F.X.K. is the senior author of the group and supervised the work.

Corresponding author

Correspondence to Franz X. Kärtner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 875 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, S., Cirmi, G., Moses, J. et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nature Photon 5, 475–479 (2011). https://doi.org/10.1038/nphoton.2011.140

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing