Abstract
Quantum teleportation1 is central to the practical realization of quantum communication2,3. Although the first proof-of-principle demonstration was reported in 1997 by the Innsbruck4 and Rome groups5, long-distance teleportation has so far only been realized in fibre with lengths of hundreds of metres6,7. An optical free-space link is highly desirable for extending the transfer distance, because of its low atmospheric absorption for certain ranges of wavelength. By following the Rome scheme5, which allows a full Bell-state measurement, we report free-space implementation of quantum teleportation over 16 km. An active feed-forward technique has been developed to enable real-time information transfer. An average fidelity of 89%, well beyond the classical limit of 2/3, is achieved. Our experiment has realized all of the non-local aspects of the original teleportation scheme and is equivalent to it up to a local unitary operation5. Our result confirms the feasibility of space-based experiments, and is an important step towards quantum-communication applications on a global scale.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Quantum teleportation mediated by surface plasmon polariton
Scientific Reports Open Access 13 July 2020
-
Identification of networking quantum teleportation on 14-qubit IBM universal quantum computer
Scientific Reports Open Access 20 February 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classic and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).
Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).
Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).
Marcikic, I., De Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).
Ursin, R. et al. Quantum teleportation across the Danube. Nature 430, 849–849 (2004).
Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).
Yamamoto, T., Koashi, M., Özdemir, S. K. & Imoto, N. Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003).
Zhao, Z., Yang, T., Chen, Y.-A., Zhang, A.-N. & Pan, J.-W. Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003).
Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).
Zhao, Z., Chen, Y.-A., Zhang, A.-N., Yang, T., Briegel, H. -J. & Pan, J.-W. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004).
Zhang, Q. et al. Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2, 678–682 (2006).
Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).
Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).
Chen, Y.-A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).
Hughes, R. J. et al. Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43.1–43.14 (2002).
Kurtsiefer, C. et al. Quantum cryptography: a step towards global key distribution. Nature 419, 450 (2002).
Aspelmeyer, M. et al. Long-distance free-space distribution of quantum entanglement. Science 301, 621–623 (2003).
Peng, C.-Z. et al. Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005).
Ursin, R. et al. Free-space distribution of entanglement and single photons over 144 km. Nature Phys. 3, 481–486 (2007).
Villoresi, P. et al. Experimental verification of the feasibility of a quantum channel between space and Earth. New J. Phys. 10, 033038 (2008).
Fedrizzi, A. et al. High-fidelity transmission of entanglement over a high-loss free-space channel. Nature Phys. 5, 389–392 (2009).
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).
Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).
Giacomini, S., Sciarrino, F., Lombardi, E. & De Martini, F. Active teleportation of a quantum bit. Phys. Rev. A 66, 030302(R) (2002).
Acknowledgements
This research, leading to the results reported here, was supported by the Chinese Academy of Sciences, the National Fundamental Research Program of China under grant no. 2006CB921900, and the National Natural Science Foundation of China.
Author information
Authors and Affiliations
Contributions
J.-W.P. and C.-Z.P. supervised the project overall. J.-W.P., C.-Z.P. and H.Y. designed the experiment. X.-M.J., J.-G.R., B.Y., Z.-H.Y., F.Z., X.-F.X., S.-K.W., S.J., T.Y. and C.-Z.P. performed the experiment. D.Y. and Y.-F.H. designed the electric devices. X.-M.J., J.-G.R., K.C. and J.-W.P. analysed the data. X.-M.J., K.C., C.-Z.P. and J.-W.P. wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Jin, XM., Ren, JG., Yang, B. et al. Experimental free-space quantum teleportation. Nature Photon 4, 376–381 (2010). https://doi.org/10.1038/nphoton.2010.87
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2010.87
This article is cited by
-
The Experiments That Led to the Nobel Prize in Physics 2022
Resonance (2023)
-
Simultaneous Quantum Teleportation within a Quantum Network
International Journal of Theoretical Physics (2022)
-
A Controlled Asymmetric Quantum Conference
International Journal of Theoretical Physics (2022)
-
Cyclic teleportation in noisy channel with nondemolition parity analysis and weak measurement
Quantum Information Processing (2022)
-
Efficient quantum multi-hop communication based on Greenberger–Horne–Zeilinger states and Bell states
Quantum Information Processing (2021)