Letter | Published:

Experimental free-space quantum teleportation

Nature Photonics volume 4, pages 376381 (2010) | Download Citation

Subjects

Abstract

Quantum teleportation1 is central to the practical realization of quantum communication2,3. Although the first proof-of-principle demonstration was reported in 1997 by the Innsbruck4 and Rome groups5, long-distance teleportation has so far only been realized in fibre with lengths of hundreds of metres6,7. An optical free-space link is highly desirable for extending the transfer distance, because of its low atmospheric absorption for certain ranges of wavelength. By following the Rome scheme5, which allows a full Bell-state measurement, we report free-space implementation of quantum teleportation over 16 km. An active feed-forward technique has been developed to enable real-time information transfer. An average fidelity of 89%, well beyond the classical limit of 2/3, is achieved. Our experiment has realized all of the non-local aspects of the original teleportation scheme and is equivalent to it up to a local unitary operation5. Our result confirms the feasibility of space-based experiments, and is an important step towards quantum-communication applications on a global scale.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Teleporting an unknown quantum state via dual classic and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

  2. 2.

    , , & Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  3. 3.

    , , & Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

  4. 4.

    et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

  5. 5.

    , , , & Experimental realization of teleporting an unknown pure quantum state via dual classical Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

  6. 6.

    , , , & Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003).

  7. 7.

    et al. Quantum teleportation across the Danube. Nature 430, 849–849 (2004).

  8. 8.

    , , & Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

  9. 9.

    , , & Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003).

  10. 10.

    , , , & Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003).

  11. 11.

    , , , & Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).

  12. 12.

    , , , , & Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004).

  13. 13.

    et al. Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2, 678–682 (2006).

  14. 14.

    et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).

  15. 15.

    et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).

  16. 16.

    et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).

  17. 17.

    et al. Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4, 43.1–43.14 (2002).

  18. 18.

    et al. Quantum cryptography: a step towards global key distribution. Nature 419, 450 (2002).

  19. 19.

    et al. Long-distance free-space distribution of quantum entanglement. Science 301, 621–623 (2003).

  20. 20.

    et al. Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005).

  21. 21.

    et al. Free-space distribution of entanglement and single photons over 144 km. Nature Phys. 3, 481–486 (2007).

  22. 22.

    et al. Experimental verification of the feasibility of a quantum channel between space and Earth. New J. Phys. 10, 033038 (2008).

  23. 23.

    et al. High-fidelity transmission of entanglement over a high-loss free-space channel. Nature Phys. 5, 389–392 (2009).

  24. 24.

    et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

  25. 25.

    & Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

  26. 26.

    , , & Active teleportation of a quantum bit. Phys. Rev. A 66, 030302(R) (2002).

Download references

Acknowledgements

This research, leading to the results reported here, was supported by the Chinese Academy of Sciences, the National Fundamental Research Program of China under grant no. 2006CB921900, and the National Natural Science Foundation of China.

Author information

Author notes

    • Ji-Gang Ren

    These authors contributed equally to this work.

Affiliations

  1. Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China

    • Xian-Min Jin
    • , Ji-Gang Ren
    • , Bin Yang
    • , Xiao-Fan Xu
    • , Yuan-Feng Hu
    • , Tao Yang
    • , Hao Yin
    • , Kai Chen
    •  & Jian-Wei Pan
  2. Physics Department, Tsinghua University, Beijing 100084, PR China

    • Ji-Gang Ren
    • , Zhen-Huan Yi
    • , Fei Zhou
    • , Shao-Kai Wang
    • , Dong Yang
    • , Shuo Jiang
    • , Cheng-Zhi Peng
    •  & Jian-Wei Pan

Authors

  1. Search for Xian-Min Jin in:

  2. Search for Ji-Gang Ren in:

  3. Search for Bin Yang in:

  4. Search for Zhen-Huan Yi in:

  5. Search for Fei Zhou in:

  6. Search for Xiao-Fan Xu in:

  7. Search for Shao-Kai Wang in:

  8. Search for Dong Yang in:

  9. Search for Yuan-Feng Hu in:

  10. Search for Shuo Jiang in:

  11. Search for Tao Yang in:

  12. Search for Hao Yin in:

  13. Search for Kai Chen in:

  14. Search for Cheng-Zhi Peng in:

  15. Search for Jian-Wei Pan in:

Contributions

J.-W.P. and C.-Z.P. supervised the project overall. J.-W.P., C.-Z.P. and H.Y. designed the experiment. X.-M.J., J.-G.R., B.Y., Z.-H.Y., F.Z., X.-F.X., S.-K.W., S.J., T.Y. and C.-Z.P. performed the experiment. D.Y. and Y.-F.H. designed the electric devices. X.-M.J., J.-G.R., K.C. and J.-W.P. analysed the data. X.-M.J., K.C., C.-Z.P. and J.-W.P. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Xian-Min Jin or Cheng-Zhi Peng or Jian-Wei Pan.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2010.87

Further reading